Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 105777, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395308

RESUMO

3-mercaptopropionate (3MPA) dioxygenase (MDO) is a mononuclear nonheme iron enzyme that catalyzes the O2-dependent oxidation of thiol-bearing substrates to yield the corresponding sulfinic acid. MDO is a member of the cysteine dioxygenase family of small molecule thiol dioxygenases and thus shares a conserved sequence of active site residues (Serine-155, Histidine-157, and Tyrosine-159), collectively referred to as the SHY-motif. It has been demonstrated that these amino acids directly interact with the mononuclear Fe-site, influencing steady-state catalysis, catalytic efficiency, O2-binding, and substrate coordination. However, the underlying mechanism by which this is accomplished is poorly understood. Here, pulsed electron paramagnetic resonance spectroscopy [1H Mims electron nuclear double resonance spectroscopy] is applied to validate density functional theory computational models for the MDO Fe-site simultaneously coordinated by substrate and nitric oxide (NO), (3MPA/NO)-MDO. The enhanced resolution provided by electron nuclear double resonance spectroscopy allows for direct observation of Fe-bound substrate conformations and H-bond donation from Tyr159 to the Fe-bound NO ligand. Further inclusion of SHY-motif residues within the validated model reveals a distinct channel restricting movement of the Fe-bound NO-ligand. It has been argued that the iron-nitrosyl emulates the structure of potential Fe(III)-superoxide intermediates within the MDO catalytic cycle. While the merit of this assumption remains unconfirmed, the model reported here offers a framework to evaluate oxygen binding at the substrate-bound Fe-site and possible reaction mechanisms. It also underscores the significance of hydrogen bonding interactions within the enzymatic active site.


Assuntos
Domínio Catalítico , Dioxigenases , Modelos Moleculares , Ácido 3-Mercaptopropiônico/química , Catálise , Dioxigenases/química , Dioxigenases/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ferro/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Estrutura Terciária de Proteína
2.
Proc Natl Acad Sci U S A ; 119(25): e2201240119, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696567

RESUMO

The synthesis of sulfur-bridged Fe-Ni heterobimetallics was inspired by Nature's strategies to "trick" abundant first row transition metals into enabling 2-electron processes: redox-active ligands (including pendant iron-sulfur clusters) and proximal metals. Our design to have redox-active ligands on each metal, NO on iron and dithiolene on nickel, resulted in the observation of unexpectedly intricate physical properties. The metallodithiolate, (NO)Fe(N2S2), reacts with a labile ligand derivative of [NiII(S2C2Ph2)]0, NiDT, yielding the expected S-bridged neutral adduct, FeNi, containing a doublet {Fe(NO)}7. Good reversibility of two redox events of FeNi led to isolation of reduced and oxidized congeners. Characterization by various spectroscopies and single-crystal X-ray diffraction concluded that reduction of the FeNi parent yielded [FeNi]-, a rare example of a high-spin {Fe(NO)}8, described as linear FeII(NO-). Mössbauer data is diagnostic for the redox change at the {Fe(NO)}7/8 site. Oxidation of FeNi generated the 2[FeNi]+⇌[Fe2Ni2]2+ equilibrium in solution; crystallization yields only the [Fe2Ni2]2+ dimer, isolated as PF6- and BArF- salts. The monomer is a spin-coupled diradical between {Fe(NO)}7 and NiDT+, while dimerization couples the two NiDT+ via a Ni2S2 rhomb. Magnetic susceptibility studies on the dimer found a singlet ground state with a thermally accessible triplet excited state responsible for the magnetism at 300 K (χMT = 0.67 emu·K·mol-1, µeff = 2.31 µB), and detectable by parallel-mode EPR spectroscopy at 20 to 50 K. A theoretical model built on an H4 chain explains this unexpected low energy triplet state arising from a combination of anti- and ferromagnetic coupling of a four-radical molecular conglomerate.

3.
J Biol Chem ; 299(7): 104897, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37290533

RESUMO

Mammalian stearoyl-CoA desaturase-1 (SCD1) introduces a double-bond to a saturated long-chain fatty acid in a reaction catalyzed by a diiron center. The diiron center is well-coordinated by conserved histidine residues and is thought to remain with the enzyme. However, we find here that SCD1 progressively loses its activity during catalysis and becomes fully inactive after about nine turnovers. Further studies show that the inactivation of SCD1 is due to the loss of an iron (Fe) ion in the diiron center and that the addition of free ferrous ions (Fe2+) sustains the enzymatic activity. Using SCD1 labeled with Fe isotope, we further show that free Fe2+ is incorporated into the diiron center only during catalysis. We also discover that the diiron center in SCD1 has prominent electron paramagnetic resonance signals in its diferric state, indicative of distinct coupling between the two ferric ions. These results reveal that the diiron center in SCD1 is structurally dynamic during catalysis and that labile Fe2+ in cells could regulate SCD1 activity and hence lipid metabolism.


Assuntos
Biocatálise , Cátions Bivalentes , Ferro , Estearoil-CoA Dessaturase , Animais , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Ferro/química , Ferro/metabolismo , Mamíferos , Estearoil-CoA Dessaturase/metabolismo , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Metabolismo dos Lipídeos
4.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338473

RESUMO

A new tridentate Cu2+ complex based on (E)-1-(pyridin-2-yl)-N-(quinolin-8-yl)methanimine (PQM) was generated and characterized to support the activation of diazo compounds for the formation of new C-N bonds. This neutral Schiff base ligand was structurally characterized to coordinate with copper(II) in an equatorial fashion, yielding a distorted octahedral complex. Upon characterization, this copper(II) complex was used to catalyze an efficient and cost-effective protocol for C-N bond formation between N-nucleophiles and copper carbene complexes arising from the activation of diazo carbonyl compounds. A substrate scope of approximately 15 different amine-based substrates was screened, yielding 2° or 3° amine products with acceptable to good yields under mild reaction conditions. Reactivity towards phenol and thiophenol were also screened, showing relatively weak C-O or C-S bond formation under optimized conditions.

5.
J Biol Inorg Chem ; 28(3): 285-299, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36809458

RESUMO

Thiol dioxygenases are a subset of non-heme mononuclear iron oxygenases that catalyze the O2-dependent oxidation of thiol-bearing substrates to yield sulfinic acid products. Cysteine dioxygenase (CDO) and 3-mercaptopropionic acid (3MPA) dioxygenase (MDO) are the most extensively characterized members of this enzyme family. As with many non-heme mononuclear iron oxidase/oxygenases, CDO and MDO exhibit an obligate-ordered addition of organic substrate before dioxygen. As this substrate-gated O2-reactivity extends to the oxygen-surrogate, nitric oxide (NO), EPR spectroscopy has long been used to interrogate the [substrate:NO:enzyme] ternary complex. In principle, these studies can be extrapolated to provide information about transient iron-oxo intermediates produced during catalytic turnover with dioxygen. In this work, we demonstrate that cyanide mimics the native thiol-substrate in ordered-addition experiments with MDO cloned from Azotobacter vinelandii (AvMDO). Following treatment of the catalytically active Fe(II)-AvMDO with excess cyanide, addition of NO yields a low-spin (S = 1/2) (CN/NO)-Fe-complex. Continuous wave and pulsed X-band EPR characterization of this complex produced in wild-type and H157N variant AvMDO reveal multiple nuclear hyperfine features diagnostic of interactions within the first- and outer-coordination sphere of the enzymatic Fe-site. Spectroscopically validated computational models indicate simultaneous coordination of two cyanide ligands replaces the bidentate (thiol and carboxylate) coordination of 3MPA allowing for NO-binding at the catalytically relevant O2-binding site. This promiscuous substrate-gated reactivity of AvMDO with NO provides an instructive counterpoint to the high substrate-specificity exhibited by mammalian CDO for L-cysteine.


Assuntos
Dioxigenases , Óxido Nítrico , Animais , Domínio Catalítico , Óxido Nítrico/química , Cianetos , Dioxigenases/metabolismo , Cisteína Dioxigenase/química , Cisteína Dioxigenase/metabolismo , Compostos de Sulfidrila/química , Ferro , Oxigênio/química , Mamíferos/metabolismo
6.
J Biol Chem ; 296: 100492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662397

RESUMO

Thiol dioxygenases are a subset of nonheme iron oxygenases that catalyze the formation of sulfinic acids from sulfhydryl-containing substrates and dioxygen. Among this class, cysteine dioxygenases (CDOs) and 3-mercaptopropionic acid dioxygenases (3MDOs) are the best characterized, and the mode of substrate binding for CDOs is well understood. However, the manner in which 3-mercaptopropionic acid (3MPA) coordinates to the nonheme iron site in 3MDO remains a matter of debate. A model for bidentate 3MPA coordination at the 3MDO Fe-site has been proposed on the basis of computational docking, whereas steady-state kinetics and EPR spectroscopic measurements suggest a thiolate-only coordination of the substrate. To address this gap in knowledge, we determined the structure of Azobacter vinelandii 3MDO (Av3MDO) in complex with the substrate analog and competitive inhibitor, 3-hydroxypropionic acid (3HPA). The structure together with DFT computational modeling demonstrates that 3HPA and 3MPA associate with iron as chelate complexes with the substrate-carboxylate group forming an additional interaction with Arg168 and the thiol bound at the same position as in CDO. A chloride ligand was bound to iron in the coordination site assigned as the O2-binding site. Supporting HYSCORE spectroscopic experiments were performed on the (3MPA/NO)-bound Av3MDO iron nitrosyl (S = 3/2) site. In combination with spectroscopic simulations and optimized DFT models, this work provides an experimentally verified model of the Av3MDO enzyme-substrate complex, effectively resolving a debate in the literature regarding the preferred substrate-binding denticity. These results elegantly explain the observed 3MDO substrate specificity, but leave unanswered questions regarding the mechanism of substrate-gated reactivity with dioxygen.


Assuntos
Ácido 3-Mercaptopropiônico/metabolismo , Azotobacter vinelandii/enzimologia , Dioxigenases/química , Dioxigenases/metabolismo , Ferro/química , Ferro/metabolismo , Ácido 3-Mercaptopropiônico/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X/métodos , Cinética , Modelos Moleculares , Especificidade por Substrato
7.
J Am Chem Soc ; 144(2): 709-722, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985880

RESUMO

The human copper-binding protein metallothionein-3 (MT-3) can reduce Cu(II) to Cu(I) and form a polynuclear Cu(I)4-Cys5-6 cluster concomitant with intramolecular disulfide bonds formation, but the cluster is unusually inert toward O2 and redox-cycling. We utilized a combined array of rapid-mixing spectroscopic techniques to identify and characterize the transient radical intermediates formed in the reaction between Zn7MT-3 and Cu(II) to form Cu(I)4Zn(II)4MT-3. Stopped-flow electronic absorption spectroscopy reveals the rapid formation of transient species with absorption centered at 430-450 nm and consistent with the generation of disulfide radical anions (DRAs) upon reduction of Cu(II) by MT-3 cysteine thiolates. These DRAs are oxygen-stable and unusually long-lived, with lifetimes in the seconds regime. Subsequent DRAs reduction by Cu(II) leads to the formation of a redox-inert Cu(I)4-Cys5 cluster with short Cu-Cu distances (<2.8 Å), as revealed by low-temperature (77 K) luminescence spectroscopy. Rapid freeze-quench Raman and electron paramagnetic resonance (EPR) spectroscopy characterization of the intermediates confirmed the DRA nature of the sulfur-centered radicals and their subsequent oxidation to disulfide bonds upon Cu(II) reduction, generating the final Cu(I)4-thiolate cluster. EPR simulation analysis of the radical g- and A-values indicate that the DRAs are directly coupled to Cu(I), potentially explaining the observed DRA stability in the presence of O2. We thus provide evidence that the MT-3 Cu(I)4-Cys5 cluster assembly process involves the controlled formation of novel long-lived, copper-coupled, and oxygen-stable disulfide radical anion transient intermediates.


Assuntos
Cobre/química , Dissulfetos/química , Radicais Livres/química , Metalotioneína 3/química , Oxigênio/química , Espectroscopia de Ressonância de Spin Eletrônica , Glutationa/química , Humanos , Metalotioneína 3/genética , Metalotioneína 3/metabolismo , Oxirredução , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Fluorescência , Zinco/química
8.
Biochem J ; 478(9): 1795-1808, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33821889

RESUMO

To inculcate biocatalytic activity in the oxygen-storage protein myoglobin (Mb), a genetically engineered myoglobin mutant H64DOPA (DOPA = L-3,4-dihydroxyphenylalanine) has been created. Incorporation of unnatural amino acids has already demonstrated their ability to accomplish many non-natural functions in proteins efficiently. Herein, the presence of redox-active DOPA residue in the active site of mutant Mb presumably stabilizes the compound I in the catalytic oxidation process by participating in an additional hydrogen bonding (H-bonding) as compared to the WT Mb. Specifically, a general acid-base catalytic pathway was achieved due to the availability of the hydroxyl moieties of DOPA. The reduction potential values of WT (E° = -260 mV) and mutant Mb (E° = -300 mV), w.r.t. Ag/AgCl reference electrode, in the presence of hydrogen peroxide, indicated an additional H-bonding in the mutant protein, which is responsible for the peroxidase activity of the mutant Mb. We observed that in the presence of 5 mM H2O2, H64DOPA Mb oxidizes thioanisole and benzaldehyde with a 10 and 54 folds higher rate, respectively, as opposed to WT Mb. Based on spectroscopic, kinetic, and electrochemical studies, we deduce that DOPA residue, when present within the distal pocket of mutant Mb, alone serves the role of His/Arg-pair of peroxidases.


Assuntos
Di-Hidroxifenilalanina/metabolismo , Heme/química , Histidina/metabolismo , Ferro/química , Mioglobina/metabolismo , Substituição de Aminoácidos , Biocatálise , Domínio Catalítico , Clonagem Molecular , Di-Hidroxifenilalanina/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Heme/metabolismo , Histidina/genética , Humanos , Ligação de Hidrogênio , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Cinética , Modelos Moleculares , Mioglobina/química , Mioglobina/genética , Oxirredução , Peroxidases/química , Peroxidases/metabolismo , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Inorg Chem ; 60(24): 18639-18651, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34883020

RESUMO

3-Mercaptopropionic acid (3MPA) dioxygenase (MDO) is a non-heme Fe(II)/O2-dependent oxygenase that catalyzes the oxidation of thiol-substrates to yield the corresponding sulfinic acid. Hydrogen-bonding interactions between the Fe-site and a conserved set of three outer-sphere residues (Ser-His-Tyr) play an important catalytic role in the mechanism of this enzyme. Collectively referred to as the SHY-motif, the functional role of these residues remains poorly understood. Here, catalytically inactive Fe(III)-MDO precomplexed with 3MPA was titrated with cyanide to yield a low-spin (S = 1/2) (3MPA/CN)-bound ternary complex (referred to as 1C). UV-visible and electron paramagnetic resonance (EPR) spectroscopy were used to monitor the binding of 3MPA and cyanide. Comparisons of results obtained from SHY-motif variants (H157N and Y159F) were performed to investigate specific H-bonding interactions. For the wild-type enzyme, the binding of 3MPA- and cyanide to the enzymatic Fe-site is selective and results in a homogeneous ternary complex. However, this selectivity is lost for the Y159F variant, suggesting that H-bonding interactions contributed from Tyr159 gate ligand coordination at the Fe-site. Significantly, the g-values for the low-spin ferric site are diagnostic of the directionality of Tyr159 H-bond donation. Computational models coupled with CASSCF/NEVPT2-calculated g-values were used to verify that a major shift in the central g-value (g2) displayed between wild-type and SHY variants could be attributed to the loss of Tyr159 H-bond donation to the Fe-bound cyanide. Applied to native cosubstrate, this H-bond donation provides a means to stabilize Fe-bound dioxygen and potentially explains the attenuated (∼15-fold) rate of catalytic turnover previously reported for MDO SHY-motif variants.


Assuntos
Compostos Férricos
10.
Environ Sci Technol ; 55(15): 10280-10290, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34255503

RESUMO

Understanding the efficiency and variability of photochemical ozone (O3) production from western wildfire plumes is important to accurately estimate their influence on North American air quality. A set of photochemical measurements were made from the NOAA Twin Otter research aircraft as a part of the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) experiment. We use a zero-dimensional (0-D) box model to investigate the chemistry driving O3 production in modeled plumes. Modeled afternoon plumes reached a maximum O3 mixing ratio of 140 ± 50 ppbv (average ± standard deviation) within 20 ± 10 min of emission compared to 76 ± 12 ppbv in 60 ± 30 min in evening plumes. Afternoon and evening maximum O3 isopleths indicate that plumes were near their peak in NOx efficiency. A radical budget describes the NOx volatile - organic compound (VOC) sensitivities of these plumes. Afternoon plumes displayed a rapid transition from VOC-sensitive to NOx-sensitive chemistry, driven by HOx (=OH + HO2) production from photolysis of nitrous acid (HONO) (48 ± 20% of primary HOx) and formaldehyde (HCHO) (26 ± 9%) emitted directly from the fire. Evening plumes exhibit a slower transition from peak NOx efficiency to VOC-sensitive O3 production caused by a reduction in photolysis rates and fire emissions. HOx production in evening plumes is controlled by HONO photolysis (53 ± 7%), HCHO photolysis (18 ± 9%), and alkene ozonolysis (17 ± 9%).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Incêndios Florestais , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Ozônio/análise , Fotoquímica
11.
Polyhedron ; 2032021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37034105

RESUMO

An EPR signal for Mn(III) bound to the metal transport protein transferrin has been detected for the first time. The temperature dependence and simulations of the EPR signal are consistent with the Mn(III) centers being six-coordinate in an elongated tetragonal environment. Thus, the incorporation of Mn(III) within the Tf active site does not vastly alter the coordination number or active site geometry relative to native Fe(III)2-Tf. This parallel mode EPR signal for Mn(III)2-Tf could prove valuable for future studies aimed at determining the physiological relevance of Mn(III)2-Tf.

12.
J Org Chem ; 85(4): 1991-2009, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31928002

RESUMO

Benzimidazoles are common in nature, medicines, and materials. Numerous strategies for preparing 2-arylbenzimidazoles exist. In this work, 1,2-disubstituted benzimidazoles were prepared from various mono- and disubstituted ortho-phenylenediamines (OPD) by iron-catalyzed oxidative coupling. Specifically, O2 and FeCl3·6H2O catalyzed the cross-dehydrogenative coupling and aromatization of diarylmethyl and dialkyl benzimidazole precursors. N,N'-Disubstituted-OPD substrates were significantly more reactive than their N,N-disubstituted isomers, which appears to be relative to their propensity for complexation and charge transfer with Fe3+. The reaction also converted N-monosubstituted OPD substrates to 2-substituted benzimidazoles; however, electron-poor substrates produce 1,2-disubstituted benzimidazoles by intermolecular imino-transfer. Kinetic, reagent, and spectroscopic (UV-vis and EPR) studies suggest a mechanism involving metal-substrate complexation, charge transfer, and aerobic turnover, involving high-valent Fe(IV) intermediates. Overall, comparative strategies for the relatively sustainable and efficient synthesis of 1,2-disubstituted benzimidazoles are demonstrated.

13.
Biochemistry ; 58(51): 5135-5150, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31750652

RESUMO

Thiol dioxygenases are non-heme mononuclear iron enzymes that catalyze the O2-dependent oxidation of free thiols (-SH) to produce the corresponding sulfinic acid (-SO2-). Regardless of the phylogenic domain, the active site for this enzyme class is typically comprised of two major features: (1) a mononuclear ferrous iron coordinated by three protein-derived histidines and (2) a conserved sequence of outer Fe-coordination-sphere amino acids (Ser-His-Tyr) spatially adjacent to the iron site (∼3 Å). Here, we utilize a promiscuous 3-mercaptopropionic acid dioxygenase cloned from Azotobacter vinelandii (Av MDO) to explore the function of the conserved S-H-Y motif. This enzyme exhibits activity with 3-mercaptopropionic acid (3mpa), l-cysteine (cys), as well as several other thiol-bearing substrates, thus making it an ideal system to study the influence of residues within the highly conserved S-H-Y motif (H157 and Y159) on substrate specificity and reactivity. The pKa values for these residues were determined by pH-dependent steady-state kinetics, and their assignments verified by comparison to H157N and Y159F variants. Complementary electron paramagnetic resonance and Mössbauer studies demonstrate a network of hydrogen bonds connecting H157-Y159 and Fe-bound ligands within the enzymatic Fe site. Crucially, these experiments suggest that the hydroxyl group of Y159 hydrogen bonds to Fe-bound NO and, by extension, Fe-bound oxygen during native catalysis. This interaction alters both the NO binding affinity and rhombicity of the 3mpa-bound iron-nitrosyl site. In addition, Fe coordination of cys is switched from thiolate only to bidentate (thiolate/amine) for the Y159F variant, indicating that perturbations within the S-H-Y proton relay network also influence cys Fe binding denticity.


Assuntos
Ácido 3-Mercaptopropiônico/metabolismo , Domínio Catalítico , Dioxigenases/química , Dioxigenases/metabolismo , Ferro , Tirosina , Motivos de Aminoácidos , Azotobacter/enzimologia , Dioxigenases/genética , Modelos Moleculares , Mutação
14.
J Org Chem ; 84(2): 1025-1034, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30571120

RESUMO

N-Alkyl and N-aryl-isoindolinones were prepared by a dioxane-mediated oxidation of isoindoline precursors. The transformation exhibits unique chemoselectivity for isoindonlines. A chiral tertiary (3°)-benzylic position was not racemized during oxidation, and methyl indoprofen was prepared by late stage oxidation. Mechanistic studies suggest a selective H atom transfer, which avoids many known oxidation (by-)products of isoindolinones.

15.
Chemistry ; 24(60): 16003-16008, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30216575

RESUMO

The nitrosylated diiron complexes, Fe2 (NO)3 , of this study are interpreted as a mono-nitrosyl Fe(NO) unit, MNIU, within an N2 S2 ligand field that serves as a metallodithiolate ligand to a dinitrosyl iron unit, DNIU. The cationic Fe(NO)N2 S2 ⋅Fe(NO)2 + complex, 1+ , of Enemark-Feltham electronic notation {Fe(NO)}7 -{Fe(NO)2 }9 , is readily obtained via myriad synthetic routes, and shown to be spin coupled and diamagnetic. Its singly and doubly reduced forms, {Fe(NO)}7 -{Fe(NO)2 }10 , 10 , and {Fe(NO)}8 -{Fe(NO)2 }10 , 1- , were isolated and characterized. While structural parameters of the DNIU are largely unaffected by redox levels, the MNIU readily responds; the neutral, S= 1 / 2 , complex, 10 , finds the extra electron density added into the DNIU affects the adjacent MNIU as seen by the decrease its Fe-N-O angle (from 171° to 149°). In contrast, addition of the second electron, now into the MNIU, returns the Fe-N-O angle to 171° in 1- . Compensating shifts in FeMNIU distances from the N2 S2 plane (from 0.518 to 0.551 to 0.851 Å) contribute to the stability of the bimetallic complex. These features are addressed by computational studies which indicate that the MNIU in 1- is a triplet-state {Fe(NO)}8 with strong spin polarization in the more linear FeNO unit. Magnetic susceptibility and parallel mode EPR results are consistent with the triplet state assignment.

16.
Arch Biochem Biophys ; 639: 44-51, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277370

RESUMO

This study showcases the potential of unnatural amino acids to enable non-natural functions when incorporated in the protein scaffold of heme metalloproteins. For this purpose, a genetically-engineered myoglobin (Mb) mutant was created by incorporating redox-active 3-amino-l-tyrosine (NH2Tyr) into its active site, replacing the distal histidine (H64) with NH2Tyr. In peroxide-shunt assays, this variant exhibits an increased rate of turnover for thioanisole and benzaldehyde oxidation as compared to the wild-type (WT) Mb. Indeed, in the presence of excess hydrogen peroxide (H2O2), a 9-fold and 81-fold increase in activity was observed over multiple turnovers for thioanisole sulfoxidation and benzoic acid formation, respectively. The increased oxidation activity in the H64NH2Tyr Mb mutant underlined the role of NH2Tyr in the distal active-site scaffold in peroxide activation. Kinetic, electrochemical, and EPR spectroscopic experiments were performed. On the basis of these studies, it is argued that the single NH2Tyr residue within the Mb variant simultaneously serves the role of the conserved His/Arg-pair within the distal pocket of horseradish peroxidase.


Assuntos
Substituição de Aminoácidos , Ácido Benzoico/química , Mioglobina/química , Sulfetos/química , Animais , Mutação de Sentido Incorreto , Mioglobina/genética , Oxirredução , Cachalote
17.
Mol Pharm ; 15(8): 2973-2983, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29771534

RESUMO

Superoxide overproduction is known to occur in multiple disease states requiring critical care; yet, noninvasive detection of superoxide in deep tissue remains a challenge. Herein, we report a metal-free magnetic resonance imaging (MRI) and electron paramagnetic resonance (EPR) active contrast agent prepared by "click conjugating" paramagnetic organic radical contrast agents (ORCAs) to the surface of tobacco mosaic virus (TMV). While ORCAs are known to be reduced in vivo to an MRI/EPR silent state, their oxidation is facilitated specifically by reactive oxygen species-in particular, superoxide-and are largely unaffected by peroxides and molecular oxygen. Unfortunately, single molecule ORCAs typically offer weak MRI contrast. In contrast, our data confirm that the macromolecular ORCA-TMV conjugates show marked enhancement for T1 contrast at low field (<3.0 T) and T2 contrast at high field (9.4 T). Additionally, we demonstrated that the unique topology of TMV allows for a "quenchless fluorescent" bimodal probe for concurrent fluorescence and MRI/EPR imaging, which was made possible by exploiting the unique inner and outer surface of the TMV nanoparticle. Finally, we show TMV-ORCAs do not respond to normal cellular respiration, minimizing the likelihood for background, yet still respond to enzymatically produced superoxide in complicated biological fluids like serum.


Assuntos
Meios de Contraste/química , Sondas Moleculares/química , Superóxidos/metabolismo , Vírus do Mosaico do Tabaco/química , Animais , Química Farmacêutica , Química Click , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Células HeLa , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Imagem Molecular/métodos , Nanoconjugados/química , Células RAW 264.7
18.
Arch Biochem Biophys ; 631: 66-74, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28826737

RESUMO

Thiol dioxygenases are non-heme mononuclear iron enzymes that catalyze the O2-dependent oxidation of free thiols (-SH) to produce the corresponding sulfinic acid (-SO2-). Previous chemical rescue studies identified a putative FeIII-O2- intermediate that precedes substrate oxidation in Mus musculus cysteine dioxygenase (Mm CDO). Given that a similar reactive intermediate has been identified in the extradiol dioxygenase 2, 3-HCPD, it is conceivable that these enzymes share other mechanistic features with regard to substrate oxidation. To explore this possibility, enzymatic reactions with Mm CDO (as well as the bacterial 3-mercaptopropionic acid dioxygenase, Av MDO) were performed using a substrate analogue (2-mercaptoaniline, 2ma). This aromatic thiol closely approximates the catecholic substrate of homoprotocatechuate of 2, 3-HPCD while maintaining the 2-carbon thiol-amine separation preferred by Mm CDO. Remarkably, both enzymes exhibit 2ma-gated O2-consumption; however, none of the expected products for thiol dioxygenase or intra/extradiol dioxygenase reactions were observed. Instead, benzothiazoles are produced by the condensation of 2ma with aldehydes formed by an off-pathway oxidation of primary alcohols added to aqueous reactions to solubilize the substrate. The observed oxidation of 1º-alcohols in 2ma-reactions is consistent with the formation of a high-valent intermediate similar to what has been reported for cytochrome P450 and mononuclear iron model complexes.


Assuntos
Ácido 3-Mercaptopropiônico/metabolismo , Álcoois/metabolismo , Compostos de Anilina/metabolismo , Azotobacter vinelandii/enzimologia , Benzotiazóis/metabolismo , Cisteína Dioxigenase/metabolismo , Dioxigenases/metabolismo , Animais , Azotobacter vinelandii/metabolismo , Camundongos , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Especificidade por Substrato
19.
Arch Biochem Biophys ; 604: 86-94, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27311613

RESUMO

3-mercaptopropionate dioxygenase from Azotobacter vinelandii (Av MDO) is a non-heme mononuclear iron enzyme that catalyzes the O2-dependent oxidation of 3-mercaptopropionate (3mpa) to produce 3-sulfinopropionic acid (3spa). With one exception, the active site residues of MDO are identical to bacterial cysteine dioxygenase (CDO). Specifically, the CDO Arg-residue (R50) is replaced by Gln (Q67) in MDO. Despite this minor active site perturbation, substrate-specificity of Av MDO is more relaxed as compared to CDO. In order to investigate the relative timing of chemical and non-chemical events in Av MDO catalysis, the pH/D-dependence of steady-state kinetic parameters (kcat and kcat/KM) and viscosity effects are measured using two different substrates [3mpa and l-cysteine (cys)]. The pL-dependent activity of Av MDO in these reactions can be rationalized assuming a diprotic enzyme model in which three ionic forms of the enzyme are present [cationic, E((z+1)); neutral, E(z); and anionic, E((z-1))]. The activities observed for each substrate appear to be dominated by electrostatic interactions within the enzymatic active site. Given the similarity between MDO and the more extensively characterized mammalian CDO, a tentative model for the role of the conserved 'catalytic triad' is proposed.


Assuntos
Ácido 3-Mercaptopropiônico/química , Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/química , Dioxigenases/química , Oxigênio/química , Arginina/química , Catálise , Domínio Catalítico , Cátions , Cisteína/química , Cisteína Dioxigenase/química , Óxido de Deutério , Escherichia coli/química , Concentração de Íons de Hidrogênio , Cinética , Conformação Molecular , Prótons , Solventes/química , Eletricidade Estática , Especificidade por Substrato , Viscosidade
20.
Biochemistry ; 54(51): 7477-90, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26624219

RESUMO

Cysteine dioxygenase (CDO) is a non-heme iron enzyme that catalyzes the O2-dependent oxidation of l-cysteine to produce cysteinesulfinic acid. Bacterial CDOs have been subdivided as either "Arg-type" or "Gln-type" on the basis of the identity of conserved active site residues. To date, "Gln-type" enzymes remain largely uncharacterized. It was recently noted that the "Gln-type" enzymes are more homologous with another thiol dioxygenase [3-mercaptopropionate dioxygenase (MDO)] identified in Variovorax paradoxus, suggesting that enzymes of the "Gln-type" subclass are in fact MDOs. In this work, a putative "Gln-type" thiol dioxygenase from Azotobacter vinelandii (Av) was purified to homogeneity and characterized. Steady-state assays were performed using three substrates [3-mercaptopropionic acid (3mpa), l-cysteine (cys), and cysteamine (ca)]. Despite comparable maximal velocities, the "Gln-type" Av enzyme exhibited a specificity for 3mpa (kcat/KM = 72000 M(-1) s(-1)) nearly 2 orders of magnitude greater than those for cys (110 M(-1) s(-1)) and ca (11 M(-1) s(-1)). Supporting X-band electron paramagnetic resonance (EPR) studies were performed using nitric oxide (NO) as a surrogate for O2 binding to confirm obligate-ordered addition of substrate prior to NO. Stoichimetric addition of NO to solutions of 3mpa-bound enzyme quantitatively yields an iron-nitrosyl species (Av ES-NO) with EPR features consistent with a mononuclear (S = (3)/2) {FeNO}(7) site. Conversely, two distinct substrate-bound conformations were observed in Av ES-NO samples prepared with cys and ca, suggesting heterogeneous binding within the enzymatic active site. Analytical EPR simulations are provided to establish the relative binding affinity for each substrate (3map > cys > ca). Both kinetic and spectroscopic results presented here are consistent with 3mpa being the preferred substrate for this enzyme.


Assuntos
Ácido 3-Mercaptopropiônico/química , Azotobacter vinelandii/enzimologia , Dioxigenases/química , Glicina/química , Catálise , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Cinética , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA