Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Foods ; 13(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39123502

RESUMO

Feruloylated arabinoxylan (AX) is a potential health-promoting fiber ingredient that can enhance nutritional properties of bread but is also known to affect dough rheology. To determine the role of feruloylation and hydrolysis of wheat bran AX on dough quality and microstructure, hydrolyzed and unhydrolyzed AX fractions with low and high ferulic acid content were produced, and their chemical composition and properties were evaluated. These fractions were then incorporated into wheat dough, and farinograph measurements, large and small deformation measurements and dough microstructure were assessed. AX was found to greatly affect both fraction properties and dough quality, and this effect was modulated by hydrolysis of AX. These results demonstrated how especially unhydrolyzed fiber fractions produced stiff doughs with poor extensibility due to weak gluten network, while hydrolyzed fractions maintained a dough quality closer to control. This suggests that hydrolysis can further improve the baking properties of feruloylated wheat bran AX. However, no clear effects from AX feruloylation on dough properties or microstructure could be detected. Based on this study, feruloylation does not appear to affect dough rheology or microstructure, and feruloylated wheat bran arabinoxylan can be used as a bakery ingredient to potentially enhance the nutritional quality of bread.

2.
Food Chem ; 413: 135660, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787668

RESUMO

The intake of dietary fibers is related with important benefits for human health. We produced two different arabinoxylan fibers with (FAX) and without ferulic acid linked (AX), 12.5 and 0.1 mg g-1 of ferulic acid respectively, by subcritical water extraction of wheat bran. Both FAX and AX fibers were used as supplement in bread production, while non-supplemented bread was used as control. Through an enzymatic deconstruction process we investigated the effect of bread making on the fibers, the preservation of their molecular structure (A/X ratio of 0.13 and Mw of 105 Da) and the interaction with other macromolecules in the bread. By mimicking the upper track digestion, we could confirm the non-digestability of the fibers and we used them for the fermentation with B. ovatus and B. adolescentis. The presence of AX fibers during fermentation showed specific substrate adaptation by the probiotic bacteria in correlation with its potential prebiotic effect.


Assuntos
Pão , Fibras na Dieta , Humanos , Pão/microbiologia , Fermentação , Xilanos/química , Digestão
3.
Food Chem ; 383: 132584, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35413756

RESUMO

Arabinoxylan (AX) is an abundant hemicellulose in wheat bran and an important functional component in bakery products. This review compares preprocessing and extraction methods, and evaluates their effect on AX properties and functionality as a bread ingredient. The extraction process results in AX isolates or concentrates with varying molecular characteristics, indicating that the process can be adjusted to produce AX with targeted functionality. AX functionality in bread seems to depend on AX properties but also on AX addition level and interactions with other components. This review suggests that the use of AX with tailored properties together with properly optimized baking process could help increasing the amount of added fiber in bread while maintaining or even improving bread quality.


Assuntos
Fibras na Dieta , Xilanos , Pão , Xilanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA