RESUMO
Explanations for the Upper Pleistocene extinction of megafauna from Sahul (Australia and New Guinea) remain unresolved. Extinction hypotheses have advanced climate or human-driven scenarios, in spite of over three quarters of Sahul lacking reliable biogeographic or chronologic data. Here we present new megafauna from north-eastern Australia that suffered extinction sometime after 40,100 (±1700) years ago. Megafauna fossils preserved alongside leaves, seeds, pollen and insects, indicate a sclerophyllous forest with heathy understorey that was home to aquatic and terrestrial carnivorous reptiles and megaherbivores, including the world's largest kangaroo. Megafauna species diversity is greater compared to southern sites of similar age, which is contrary to expectations if extinctions followed proposed migration routes for people across Sahul. Our results do not support rapid or synchronous human-mediated continental-wide extinction, or the proposed timing of peak extinction events. Instead, megafauna extinctions coincide with regionally staggered spatio-temporal deterioration in hydroclimate coupled with sustained environmental change.
Assuntos
Mudança Climática/história , Extinção Biológica , Fósseis , Animais , Austrália , Carnivoridade , Classificação , Clima , Dromaiidae , Ecossistema , Florestas , História Antiga , Humanos , Macropodidae , Marsupiais , Nova Guiné , Paleontologia , Datação Radiométrica , Répteis , UrânioRESUMO
Sediment runoff has been cited as a major contributor to the declining health of the Great Barrier Reef (GBR), however, climate and land use drivers have not been jointly evaluated. This study used alluvial archives from fluvial benches in two tributaries of the Upper Burdekin catchment together with the best available land use history and climate proxy records to provide insights into the timing of depositional events in this region over the past 500â¯years. This study suggests that mining and the increased runoff variability in the latter half of the nineteenth century are the likely sources of the original excess sediment that was used to build the bench features in these catchments. Grazing also contributed to increased bench sedimentation prior to 1900, however, the contribution of grazing was likely more significant in the second half of the 20th century, and continues to be a dominant land use contributor today.