Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(1): e1011753, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38181054

RESUMO

Biological cells replicate their genomes in a well-planned manner. The DNA replication program of an organism determines the timing at which different genomic regions are replicated, with fundamental consequences for cell homeostasis and genome stability. In a growing cell culture, genomic regions that are replicated early should be more abundant than regions that are replicated late. This abundance pattern can be experimentally measured using deep sequencing. However, a general quantitative theory linking this pattern to the replication program is still lacking. In this paper, we predict the abundance of DNA fragments in asynchronously growing cultures from any given stochastic model of the DNA replication program. As key examples, we present stochastic models of the DNA replication programs in budding yeast and Escherichia coli. In both cases, our model results are in excellent agreement with experimental data and permit to infer key information about the replication program. In particular, our method is able to infer the locations of known replication origins in budding yeast with high accuracy. These examples demonstrate that our method can provide insight into a broad range of organisms, from bacteria to eukaryotes.


Assuntos
Replicação do DNA , Genoma , Replicação do DNA/genética , DNA , Genômica , Replicação Viral , Origem de Replicação/genética , Período de Replicação do DNA
2.
Phys Rev E ; 108(6): L062101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243435

RESUMO

Quantifying irreversibility of a system using finite information constitutes a major challenge in stochastic thermodynamics. We introduce an observable that measures the time-reversal asymmetry between two states after a given time lag. Our central result is a bound on the time-reversal asymmetry in terms of the total cycle affinity driving the system out of equilibrium. This result leads to further thermodynamic bounds on the asymmetry of directed fluxes, on the asymmetry of finite-time cross-correlations, and on the cycle affinity of coarse-grained dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA