Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38775128

RESUMO

The application of protein hydrolysates (PH) biostimulants is considered a promising approach to promote crop growth and resilience against abiotic stresses. Nevertheless, PHs bioactivity depends on both the raw material used for their preparation and the molecular fraction applied. The present research aimed at investigating the molecular mechanisms triggered by applying a PH and its fractions on plants subjected to nitrogen limitations. To this objective, an integrated transcriptomic-metabolomic approach was used to assess lettuce plants grown under different nitrogen levels and treated with either the commercial PH Vegamin® or its molecular fractions PH1(>10 kDa), PH2 (1-10 kDa) and PH3 (<1 kDa). Regardless of nitrogen provision, biostimulant application enhanced lettuce biomass, likely through a hormone-like activity. This was confirmed by the modulation of genes involved in auxin and cytokinin synthesis, mirrored by an increase in the metabolic levels of these hormones. Consistently, PH and PH3 upregulated genes involved in cell wall growth and plasticity. Furthermore, the accumulation of specific metabolites suggested the activation of a multifaceted antioxidant machinery. Notwithstanding, the modulation of stress-response transcription factors and genes involved in detoxification processes was observed. The coordinated action of these molecular entities might underpin the increased resilience of lettuce plants against nitrogen-limiting conditions. In conclusion, integrating omics techniques allowed the elucidation of mechanistic aspects underlying PH bioactivity in crops. Most importantly, the comparison of PH with its fraction PH3 showed that, except for a few peculiarities, the effects induced were equivalent, suggesting that the highest bioactivity was ascribable to the lightest molecular fraction.


Assuntos
Lactuca , Nitrogênio , Hidrolisados de Proteína , Lactuca/metabolismo , Lactuca/genética , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Nitrogênio/metabolismo , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolômica , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/genética , Multiômica
2.
J Sci Food Agric ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804737

RESUMO

BACKGROUND: Protein hydrolysates (PHs) can enhance plant nitrogen nutrition and improve the quality of vegetables, depending on their bioactive compounds. A tomato greenhouse experiment was conducted under both optimal (14 mM) and suboptimal (2 mM) nitrogen (N-NO3) conditions. Tomatoes were treated with a new Malvaceae-derived PH (MDPH) and its molecular fractions (MDPH1, >10 kDa; MDPH2, 1-10 kDa and MDPH3, <1 kDa). RESULTS: Under optimal N conditions, the plants increased biomass and fruit yield, and showed a higher photosynthetic pigment content in leaves in comparison with suboptimal N, whereas under N-limiting conditions, an increase in dry matter, soluble solid content (SSC) and lycopene, a reduction in firmness, and changes in organic acid and phenolic compounds were observed. With 14 mM N-NO3, MDPH3 stimulated an increase in dry weight and increased yield components and lycopene in the fruit. The MDPH2 fraction also resulted in increased lycopene accumulation in fruit under 14 mM N-NO3. At a low N level, the PH fractions showed distinct effects compared with the whole MDPH and the control, with an increase in biomass for MDPH1 and MDPH2 and a higher pigment content for MDPH3. Regardless of N availability, all the fractions affected fruit quality by increasing SSC, whereas MDPH2 and MDPH3 modified organic acid content and showed a higher concentration of flavonols, lignans, and stilbenes. CONCLUSION: The molecular weight of the peptides modifies the effect of PHs on plant performance, with different behavior depending on the level of N fertilization, confirming the effectiveness of fractioning processes. © 2024 Society of Chemical Industry.

3.
BMC Microbiol ; 23(1): 184, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438698

RESUMO

BACKGROUND: The release of organic acids (OAs) is considered the main mechanism used by phosphate-solubilizing bacteria (PSB) to dissolve inorganic phosphate in soil. Nevertheless, little is known about the effect of individual OAs produced by a particular PSB in a soil-plant system. For these reasons, the present work aimed at investigating the effect of Enterobacter sp. strain 15S and the exogenous application of its OAs on (i) the solubilization of tricalcium phosphate (TCP), (ii) plant growth and (iii) P nutrition of cucumber. To this purpose two independent experiments have been performed. RESULTS: In the first experiment, carried out in vitro, the phosphate solubilizing activity of Enterobacter 15S was associated with the release of citric, fumaric, ketoglutaric, malic, and oxalic acids. In the second experiment, cucumber plants were grown in a Leonard jar system consisting of a nutrient solution supplemented with the OAs previously identified in Enterobacter 15S (jar's base) and a substrate supplemented with the insoluble TCP where cucumber plants were grown (jar's top). The use of Enterobacter 15S and its secreted OAs proved to be efficient in the in situ TCP solubilization. In particular, the enhancement of the morpho-physiological traits of P-starved cucumber plants was evident when treated with Enterobacter 15S, oxalate, or citrate. The highest accumulation of P in roots and shoots induced by such treatments further corroborated this hypothesis. CONCLUSION: In our study, the results presented suggest that organic acids released by Enterobacter 15S as well as the bacterium itself can enhance the P-acquisition by cucumber plants.


Assuntos
Cucumis sativus , Fosfatos de Cálcio , Fosfatos , Compostos Orgânicos , Ácido Cítrico , Enterobacter , Oxalatos
4.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430691

RESUMO

Increased soil salinity is one of the main concerns in agriculture and food production, and it negatively affects plant growth and crop productivity. In order to mitigate the adverse effects of salinity stress, plant biostimulants (PBs) have been indicated as a promising approach. Indeed, these products have a beneficial effect on plants by acting on primary and secondary metabolism and by inducing the accumulation of protective molecules against oxidative stress. In this context, the present work is aimed at comparatively investigating the effects of microbial (i.e., Azospirillum brasilense) and plant-derived biostimulants in alleviating salt stress in tomato plants by adopting a multidisciplinary approach. To do so, the morphological and biochemical effects were assessed by analyzing the biomass accumulation and root characteristics, the activity of antioxidant enzymes and osmotic stress protection. Furthermore, modifications in the metabolomic profiles of both leaves and root exudates were also investigated by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS). According to the results, biomass accumulation decreased under high salinity. However, the treatment with A. brasilense considerably improved root architecture and increased root biomass by 156% and 118% in non-saline and saline conditions, respectively. The antioxidant enzymes and proline production were enhanced in salinity stress at different levels according to the biostimulant applied. Moreover, the metabolomic analyses pointed out a wide set of processes being affected by salinity and biostimulant interactions. Crucial compounds belonging to secondary metabolism (phenylpropanoids, alkaloids and other N-containing metabolites, and membrane lipids) and phytohormones (brassinosteroids, cytokinins and methylsalicylate) showed the most pronounced modulation. Overall, our results suggest a better performance of A. brasilense in alleviating high salinity than the vegetal-derived protein hydrolysates herein evaluated.


Assuntos
Azospirillum brasilense , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Azospirillum brasilense/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Estresse Salino
5.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516916

RESUMO

Fe chlorosis is considered as one of the major constraints on crop growth and yield worldwide, being particularly worse when associated with S shortage, due to the tight link between Fe and S. Plant adaptation to inadequate nutrient availabilities often relies on the release of root exudates that enhance nutrients, mobilization from soil colloids and favour their uptake by roots. This work aims at characterizing the exudomic profile of hydroponically grown tomato plants subjected to either single or combined Fe and S deficiency, as well as at shedding light on the regulation mechanisms underlying Fe and S acquisition processes by plants. Root exudates have been analysed by untargeted metabolomics, through liquid chromatography-mass spectrometry as well as gas chromatography-mass spectrometry following derivatization. More than 200 metabolites could be putatively annotated. Venn diagrams show that 23%, 10% and 21% of differential metabolites are distinctively modulated by single Fe deficiency, single S deficiency or combined Fe-S deficiency, respectively. Interestingly, for the first time, a mugineic acid derivative is detected in dicot plants root exudates. The results seem to support the hypothesis of the co-existence of the two Fe acquisition strategies in tomato plants.


Assuntos
Exsudatos e Transudatos/metabolismo , Ferro/metabolismo , Raízes de Plantas/fisiologia , Solanum lycopersicum/fisiologia , Enxofre/metabolismo , Biomassa , Perfilação da Expressão Gênica , Metaboloma , Metabolômica , Nutrientes/metabolismo , Desenvolvimento Vegetal
6.
Plant Mol Biol ; 101(1-2): 129-148, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31267256

RESUMO

Iron and phosphorus are abundant elements in soils but poorly available for plant nutrition. The availability of these two nutrients represents a major constraint for fruit tree cultivation such as apple (Malus × domestica) leading very often to a decrease of fruit productivity and quality worsening. Aim of this study was to characterize common and specific features of plant response to Fe and P deficiencies by ionomic, transcriptomic and exudation profiling of apple roots. Under P deficiency, the root release of oxalate and flavonoids increased. Genes encoding for transcription factors and transporters involved in the synthesis and release of root exudates were upregulated by P-deficient roots, as well as those directly related to P acquisition. In Fe-deficiency, plants showed an over-accumulation of P, Zn, Cu and Mn and induced the transcription of those genes involved in the mechanisms for the release of Fe-chelating compounds and Fe mobilization inside the plants. The intriguing modulation in roots of some transcription factors, might indicate that, in this condition, Fe homeostasis is regulated by a FIT-independent pathway. In the present work common and specific features of apple response to Fe and P deficiency has been reported. In particular, data indicate similar modulation of a. 230 genes, suggesting the occurrence of a crosstalk between the two nutritional responses involving the transcriptional regulation, shikimate pathway, and the root release of exudates.


Assuntos
Deficiências de Ferro , Malus/fisiologia , Fósforo/deficiência , Transcriptoma , Transporte Biológico , Perfilação da Expressão Gênica , Homeostase , Ferro/metabolismo , Malus/genética , Fósforo/metabolismo , Exsudatos de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Análise de Sequência de RNA
7.
J Exp Bot ; 70(4): 1313-1324, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30715422

RESUMO

Nitrogen (N) represents one of the limiting factors for crop growth and productivity and to date has been widely supplied via external application of fertilizers. However, the use of plant growth-promoting rhizobacteria (PGPR) might represent a valuable tool to further improve plant nutrition. This study examines the influence of Azospirillum brasilense strain Cd on nitrate uptake in maize (Zea mays) plants, focusing on the high-affinity transport system (HATS). Plants were induced with nitrate (500 µM) and either inoculated or not with Azospirillum. Inoculation decreased the nitrate uptake rate in induced plants, suggesting that Azospirillum may negatively affect HATS in the short term. The expression dynamics of ZmNF-YA and ZmLBD37 suggested that Azospirillum affected the N balance in the plants, most probably by supplying them with reduced N, i.e. NH4+. This was further corroborated by measurements of total N and the expression of ammonium transporter genes. Overall, our data demonstrate that Azospirillum can counteract the plant response to nitrate induction, albeit without compromising N nutrition. This suggests that the agricultural application of microbial inoculants requires fine-tuning of external fertilizer inputs.


Assuntos
Inoculantes Agrícolas/fisiologia , Azospirillum brasilense/química , Nitratos/metabolismo , Zea mays/metabolismo , Transporte Biológico
8.
Ecotoxicol Environ Saf ; 182: 109430, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31306921

RESUMO

Agronomic strategies as intercropping might be applied to reduce plant-available copper (Cu) in Cu-contaminated soils. Thus, our aim was to characterize two different oat cultivars, Avena sativa L. cv. Fronteira and cv. Perona for their ability to tolerate and/or phytostabilize Cu. Copper toxicity reduced plant biomass of both cultivars. The exudate analysis revealed the presence of phenolic compounds and phytosiderophores, yet with a different pattern between the cultivars: cv. Fronteira showed a Cu-concentration and time-dependent release of phenolic compounds, while cv. Perona down-regulated this release during the second week of treatment. Copper concentration increased linearly in all the tissues analysed with increasing Cu concentration showing yet a different compartmentalization: cv. Fronteira and cv. Perona preferentially accumulated Cu in the apoplasm and symplast, respectively. This higher accumulation of Cu in the apoplasm strongly reduces the available binding sites, leading to a competitive absorption with other macro-and micronutrients (e.g. Ca, Mn, Zn). Furthermore, in both cultivars Cu toxicity led to a significant reduction of shoot phosphorus content. The ionomic profile and compartmentalization of Cu together with the root activities demonstrate the different tolerance mechanism towards Cu toxicity of the two oat cultivars. In particular, cv. Fronteira seems to adopt an exclusion strategy based on accumulating Cu in the apoplasm and on the exudation of phenolic compounds. Thus, this cultivar could reduce the mobility and the consequent soil bioavailability of Cu playing an important role as phytostabilizer plant in intercropping systems in Cu-contaminated vineyards or orchards.


Assuntos
Avena/efeitos dos fármacos , Cobre/toxicidade , Poluentes do Solo/toxicidade , Avena/química , Disponibilidade Biológica , Biomassa , Cobre/análise , Poluição Ambiental/análise , Raízes de Plantas/metabolismo , Solo/química , Poluentes do Solo/análise
9.
J Exp Bot ; 66(20): 6483-95, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26188206

RESUMO

Strawberries are a very popular fruit among berries, for both their commercial and economic importance, but especially for their beneficial effects for human health. However, their bioactive compound content is strictly related to the nutritional status of the plant and might be affected if nutritional disorders (e.g. Fe or P shortage) occur. To overcome nutrient shortages, plants evolved different mechanisms, which often involve the release of root exudates. The biochemical and molecular mechanisms underlying root exudation and its regulation are as yet still poorly known, in particular in woody crop species. The aim of this work was therefore to characterize the pattern of root exudation of strawberry plants grown in either P or Fe deficiency, by investigating metabolomic changes of root tissues and the expression of genes putatively involved in exudate extrusion. Although P and Fe deficiencies differentially affected the total metabolism, some metabolites (e.g. raffinose and galactose) accumulated in roots similarly under both conditions. Moreover, P deficiency specifically affected the content of galactaric acid, malic acid, lysine, proline, and sorbitol-6-phosphate, whereas Fe deficiency specifically affected the content of sucrose, dehydroascorbic acid, galactonate, and ferulic acid. At the same time, the citrate content did not change in roots under both nutrient deficiencies with respect to the control. However, a strong release of citrate was observed, and it increased significantly with time, being +250% and +300% higher in Fe- and P-deficient plants, respectively, compared with the control. Moreover, concomitantly, a significant acidification of the growth medium was observed in both treatments. Gene expression analyses highlighted for the first time that at least two members of the multidrug and toxic compound extrusion (MATE) transporter family and one member of the plasma membrane H(+)-ATPase family are involved in the response to both P and Fe starvation in strawberry plants.


Assuntos
Fragaria/metabolismo , Deficiências de Ferro , Metaboloma , Fósforo/deficiência , Proteínas de Plantas/metabolismo , Fragaria/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
10.
J Proteome Res ; 13(2): 408-21, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24350862

RESUMO

A symbiotic association with N-fixing bacteria facilitates the growth of leguminous plants under nitrogen-limiting conditions. The establishment of the symbiosis requires signal exchange between the host and the bacterium, which leads to the formation of root nodules, inside which bacteria are hosted. The formation of nodules is controlled through local and systemic mechanisms, which involves root-shoot communication. Our study was aimed at investigating the proteomic changes occurring in shoots and concomitantly in roots of Medicago truncatula at an early stage of Sinorhizobium meliloti infection. The principal systemic effects consisted in alteration of chloroplast proteins, induction of proteins responsive to biotic stress, and changes in proteins involved in hormonal signaling and metabolism. The most relevant local effect was the induction of proteins involved in the utilization of photosynthates and C-consuming processes (such as sucrose synthase and fructose-bisphosphate aldolase). In addition, some redox enzymes such as peroxiredoxin and ascorbate peroxidase showed an altered abundance. The analysis of local and systemic proteome changes suggests the occurrence of a stress response in the shoots and the precocious alteration of energy metabolism in roots and shoots. Furthermore, our data indicate the possibility that ABA and ethylene participate in the communicative network between root and shoot in the control of rhizobial infection.


Assuntos
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Sinorhizobium meliloti/metabolismo , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel Bidimensional , Medicago truncatula/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Sinorhizobium meliloti/fisiologia , Simbiose , Espectrometria de Massas em Tandem
11.
J Integr Plant Biol ; 56(11): 1080-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24805158

RESUMO

In higher plants, NO3(-) can induce its own uptake and the magnitude of this induction is positively related to the external anion concentration. This phenomenon has been characterized in both herbaceous and woody plants. Here, different adaptation strategies of roots from two maize (Zea mays L., ZmAGOs) inbred lines differing in nitrogen use efficiency (NUE) and exhibiting different timing of induction were discussed by investigating NO3(-) -induced changes in their transcriptome. Lo5 line (high NUE) showing the maximum rate of NO3(-) uptake 4 h after the provision of 200 µmol/L NO3(-) treatment modulated a higher number of transcripts relative to T250 (low NUE) that peaked after 12 h. The two inbred lines share only 368 transcripts that are modulated by the treatment with NO3(-) and behaved differently when transcripts involved in anion uptake and assimilation were analyzed. T250 line responded to the NO3(-) induction modulating this group of genes as reported for several plant species. On the contrary, the Lo5 line did not exhibit during the induction changes in this set of genes. Obtained data suggest the importance of exploring the physiological and molecular variations among different maize genotypes in response to environmental clues like NO3(-) provision, in order to understand mechanisms underlying NUE.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Endogamia , Nitratos/farmacologia , Nitrogênio/farmacologia , Transcrição Gênica/efeitos dos fármacos , Zea mays/genética , Perfilação da Expressão Gênica , Nitratos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Fatores de Tempo , Zea mays/efeitos dos fármacos
12.
Sci Rep ; 14(1): 10710, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729985

RESUMO

Plant biostimulants are widely applied in agriculture for their ability to improve plant fitness. In the present work, the impact of Graminaceae-derived protein hydrolysate (P) and its lighter molecular fraction F3 (< 1 kDa) on lettuce plants, subjected to either no salt or high salt conditions, was investigated through the combination of metabolomics and transcriptomics. The results showed that both treatments significantly modulated the transcriptome and metabolome of plants under salinity stress, highlighting an induction of the hormonal response. Nevertheless, P and F3 also displayed several peculiarities. F3 specifically modulated the response to ethylene and MAPK signaling pathway, whereas P treatment induced a down-accumulation of secondary metabolites, albeit genes controlling the biosynthesis of osmoprotectants and antioxidants were up-regulated. Moreover, according with the auxin response modulation, P promoted cell wall biogenesis and plasticity in salt-stressed plants. Notably, our data also outlined an epigenetic control of gene expression induced by P treatment. Contrarily, experimental data are just partially in agreement when not stressed plants, treated with P or F3, were considered. Indeed, the reduced accumulation of secondary metabolites and the analyses of hormone pathways modulation would suggest a preferential allocation of resources towards growth, that is not coherent with the down-regulation of the photosynthetic machinery, the CO2 assimilation rate and leaves biomass. In conclusion, our data demonstrate that, although they might activate different mechanisms, both the P and F3 can result in similar benefits, as far as the accumulation of protective osmolytes and the enhanced tolerance to oxidative stress are concerned. Notably, the F3 fraction exhibits slightly greater growth promotion effects under high salt conditions. Most importantly, this research further corroborates that biostimulants' mode of action is dependent on plants' physiological status and their composition, underscoring the importance of investigating the bioactivity of the different molecular components to design tailored applications for the agricultural practice.


Assuntos
Regulação da Expressão Gênica de Plantas , Lactuca , Metabolômica , Lactuca/metabolismo , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Lactuca/genética , Metabolômica/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Salino , Transcriptoma , Metaboloma/efeitos dos fármacos , Perfilação da Expressão Gênica , Multiômica
13.
Foods ; 12(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37048258

RESUMO

Food authenticity plays a pivotal role in the modern age since an increased consumers awareness has led them to pay more attention to food commodities. For this reason, it is important to have reliable and fast techniques able to detect possible adulterations in food, which affect qualitative and economic value. Therefore, the aim of this study was to detect possible adulterations in apple juice from others fruit species (i.e., pear, peach, and kiwi) combining DNA barcoding approach, using trnL (UAA) intron, with high resolution melting analysis (HRMA). A preliminary phylogenetic analysis, using sequences retrieved by the GenBank, confirmed the discriminatory power of trnL (UAA) intron among the four fruit species examined. Moreover, the sequencing of the trnL (UAA) fragments obtained from apple, pear, peach, and kiwi, demonstrated the suitability of an inner shorter sequence, P6 loop, to differentiate the considered species. The HRMA coupled with trnL (UAA) intron allowed discrimination among the four fruits but provided incomplete results for juices. Whereas the HRMA targeting the P6 loop amplicons confirmed the suitability of the technique to qualitatively distinguish fruit juices composed by the combination of apple/pear and apple/peach. However, the impossibility of discriminating apple/kiwi juices from the pure kiwi sample highlighted limitations, most likely related to the DNA extraction process. This hypothesis was further confirmed by analyzing DNA blends obtained by combining nucleic acids extracted from pure matrixes (i.e., apple and kiwi fruits). In this specific case, the application of HRMA allowed both qualitative and quantitative assessment of the samples.

14.
Plants (Basel) ; 12(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36840057

RESUMO

Salinity in water and soil is a critical issue for food production. Using biostimulants provides an effective strategy to protect crops from salinity-derived yield losses. The research supports the effectiveness of protein hydrolysate (PH) biostimulants based on their source material. A greenhouse experiment was performed on lettuce plants under control (0 mM NaCl) and high salinity conditions (30 mM NaCl) using the Trainer (T) and Vegamin (V) PH biostimulants. The recorded data included yield parameters, mineral contents, auxiliary pigments, and polyphenolics. The plant sample material was further analyzed to uncover the unique metabolomic trace of the two biostimulants. The results showed an increased yield (8.9/4.6%, T/V) and higher photosynthetic performance (14%) compared to control and salinity treatments. Increased yield in salinity condition by T compared to V was deemed significant due to the positive modulation in stress-protecting molecules having an oxidative stress relief effect such as lutein (39.9% 0 × T vs. 30 × V), ß-carotene (23.4% vs. V overall), and flavonoids (27.7% vs. V). The effects of PH biostimulants on the physio-chemical and metabolic performance of lettuce plants are formulation dependent. However, they increased plant growth under stress conditions, which can prove profitable.

15.
Plant Sci ; 335: 111793, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454818

RESUMO

Nutrient deficiencies considerably limit agricultural production worldwide. However, while single deficiencies are widely studied, combined deficiencies are poorly addressed. Hence, the aim of this paper was to study single and combined deficiencies of iron (Fe) and phosphorus (P) in barley (Hordeum vulgare) and tomato (Solanum lycopersicum). Plants were grown in hydroponics and root exudation was measured over the growing period. At harvest, root morphology and root and shoot ionome was assessed. Shoot-to-root-ratio decreased in both species and in all nutrient deficiencies, besides in -Fe tomato. Barley root growth was enhanced in plants subjected to double deficiency behaving similarly to -P, while tomato reduced root morphology parameters in all treatments. To cope with the nutrient deficiency barley exuded mostly chelants, while tomato relied on organic acids. Moreover, tomato exhibited a slight exudation increase over time not detected in barley. Overall, in none of the species the double deficiency caused a substantial increase in root exudation. Multivariate statistics emphasized that all the treatments were significantly different from each other in tomato, while in barley only -Fe was statistically different from the other treatments. Our findings highlight that the response of the studied plants in double deficiencies is not additive but plant specific.


Assuntos
Hordeum , Solanum lycopersicum , Raízes de Plantas , Ferro , Transporte Biológico , Nutrientes , Hordeum/genética
16.
Front Plant Sci ; 14: 1077140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875568

RESUMO

Plants have evolved diverse plant-species specific tolerance mechanisms to cope with salt stress. However, these adaptive strategies often inefficiently mitigate the stress related to increasing salinity. In this respect, plant-based biostimulants have gained increasing popularity since they can alleviate deleterious effects of salinity. Hence, this study aimed to evaluate the sensitivity of tomato and lettuce plants grown under high salinity and the possible protective effects of four biostimulants based on vegetal protein hydrolysates. Plants were set in a 2 × 5 factorial experimental design completely randomized with two salt conditions, no salt (0 mM) and high salt (120 mM for tomato or 80 mM for lettuce), and five biostimulant treatments (C: Malvaceae-derived, P: Poaceae-derived, D: Legume-derived commercial 'Trainer®', H: Legume-derived commercial 'Vegamin®', and Control: distilled water). Our results showed that both salinity and biostimulant treatments affected the biomass accumulation in the two plant species, albeit to different extents. The salinity stress induced a higher activity of antioxidant enzymes (e.g., catalase, ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase) and the overaccumulation of osmolyte proline in both lettuce and tomato plants. Interestingly, salt-stressed lettuce plants showed a higher accumulation of proline as compared to tomato plants. On the other hand, the treatment with biostimulants in salt-stressed plants caused a differential induction of enzymatic activity depending on the plant and the biostimulant considered. Overall, our results suggest that tomato plants were constitutively more tolerant to salinity than lettuce plants. As a consequence, the effectiveness of biostimulants in alleviating high salt concentrations was more evident in lettuce. Among the four biostimulants tested, P and D showed to be the most promising for the amelioration of salt stress in both the plant species, thereby suggesting their possible application in the agricultural practice.

17.
Front Plant Sci ; 14: 1289288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078081

RESUMO

A field trial was carried out to investigate the effects of compost application on a young Cabernet sauvignon vineyard located in a hilly area in the North-East of Italy and subjected to land terracing before plantation. The use of a compost based on manure, pruning residues and pomace at a rate of 65 t ha-1 was compared to the mineral fertilization regime recommended for the vineyards in the area (NPK: 80, 50, 200 kg ha-1). A multi-factorial approach that considered soil chemical properties, microbial community structure and function, vine nutritional and vegetative indexes, yield and quality parameters was applied in the attempt of depict interrelated effects of compost on all these factors. Results of this study show that the application of compost for three consequent years greatly increased soil organic matter content and improved the mineral nutrient availability in the soil. Soil biological fertility showed a slow but significant response to compost addition as from the second year of treatment microbial growth and enzyme activity were increased compared to those of the inorganic fertilization, with special regard to enzymes involved in P cycle. A shift in the soil microbial community structure was also observed in compost-treated soil, with higher presence of copiotrophic bacteria, indicators of soil quality, and phosphorus solubilizing bacteria. A decrease of pathogenic fungal strains was also observed. Organic fertilization increased plant nutrient uptake and vegetative growth compared to those observed in chemically fertilized vines. A trend toward increased yield and improvements for some grape quality parameters such as acidity and pH were observed in the first year of production. These results provide evidence that compost can boost soil fertility restoration in vineyard disturbed by land terracing, allowing for agronomic performances comparable or even improved than those of chemically fertilized vines.

18.
Plant Sci ; 337: 111873, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37739018

RESUMO

This study aimed to assess the effectiveness of plant growth-promoting rhizobacteria (PGPR; Pseudomonas strain So_08) and arbuscular mycorrhizal fungi (AMF; Rhizoglomus irregulare BEG72 and Funneliformis mosseae BEG234) in mitigating the detrimental effects of cadmium (Cd) and zinc (Zn) stress in tomato plants. Plant biomass, root morphology, leaf relative water content, membrane stability, photosynthetic performance, chlorophyll content, and heavy metals (HMs) accumulation were determined. Furthermore, an ionomic profile was conducted to investigate whether microbial inoculants affected the uptake and allocation of macro- and micronutrients. Metabolomics with pathway analysis of both roots and leaves was performed to unravel the mechanisms underlying the differential responses to HMs stress. The findings revealed that the levels of HMs did not significantly affect plant growth parameters; however, they affected membrane stability, photosynthetic performance, nutrient allocation, and chlorophyll content. Cadmium was mainly accumulated in roots, whilst Zn exhibited accumulation in various plant organs. Our findings demonstrate the beneficial effects of PGPR and AMF in mitigating Cd and Zn stress in tomato plants. The microbial inoculations improved physiological parameters and induced differential accumulation of macro- and micronutrients, modulating nutrient uptake balance. These results provide insights into the mechanisms underlying the plant-microbe interactions and highlight the differential modulation of the biosynthetic pathways of secondary metabolites related to oxidative stress response, membrane lipids stability, and phytohormone crosstalk.

19.
BMC Plant Biol ; 12: 233, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23217154

RESUMO

BACKGROUND: The symbiotic interaction between leguminous plants and rhizobia involves two processes: bacterial infection, resulting in the penetration of bacteria in epidermal and cortical cells, and root nodule organogenesis. Root nodule symbiosis is activated by rhizobial signalling molecules, called Nodulation factors (NFs). NF perception induces the expression of several genes called early nodulins. The early nodulin N5 of Medicago truncatula is a lipid transfer protein that has been shown to positively regulate nodulation although it displays in vitro inhibitory activity against Sinorhizobium meliloti. The purpose of this work was to investigate the role of MtN5 by studying its spatial and temporal pattern of expression during the symbiotic interaction, also in relation to known components of the symbiotic signalling pathway, and by analysing the phenotypic alterations displayed by rhizobia-inoculated MtN5-silenced roots. RESULTS: We show here that MtN5 is a NF-responsive gene expressed at a very early phase of symbiosis in epidermal cells and root hairs. MtN5 expression is induced in vitro by rhizobial effector molecules and by auxin and cytokinin, phytohormones involved in nodule organogenesis. Furthermore, lipid signaling is implicated in the response of MtN5 to rhizobia, since the activity of phospholipase D is required for MtN5 induction in S. meliloti-inoculated roots. MtN5-silenced roots inoculated with rhizobia display an increased root hair curling and a reduced number of invaded primordia compared to that in wild type roots, but with no impairment to nodule primordia formation. This phenotype is associated with the stimulation of ENOD11 expression, an early marker of infection, and with the down-regulation of Flotillin 4 (FLOT4), a protein involved in rhizobial entry. CONCLUSIONS: These data indicate that MtN5 acts downstream of NF perception and upstream of FLOT4 in regulating pre-infection events. The positive effect of MtN5 on nodule primordia invasion is linked to the restriction of bacterial spread at the epidermal level. Furthermore, MtN5 seems to be dispensable for nodule primordia formation. These findings provide new information about the complex mechanism that controls the competence of root epidermal cells for rhizobial invasion.


Assuntos
Proteínas de Transporte/fisiologia , Medicago truncatula/fisiologia , Epiderme Vegetal/microbiologia , Proteínas de Plantas/fisiologia , Sinorhizobium meliloti/fisiologia , Simbiose/genética , Proteínas de Transporte/genética , Citocininas/fisiologia , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Ácidos Indolacéticos/metabolismo , Medicago truncatula/genética , Medicago truncatula/microbiologia , Mutagênese Insercional , Epiderme Vegetal/fisiologia , Proteínas de Plantas/genética , Nodulação/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Tempo , Transformação Genética
20.
Front Plant Sci ; 13: 1034425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743562

RESUMO

The application of copper (Cu)-based fungicides for crop protection plans has led to a high accumulation of Cu in soils, especially in vineyards. Copper is indeed an essential micronutrient for plants, but relatively high concentrations in soil or other growth substrates may cause toxicity phenomena, such as alteration of the plant's growth and disturbance in the acquisition of mineral nutrients. This last aspect might be particularly relevant in the case of nitrate ( NO 3 - ) , whose acquisition in plants is finely regulated through the transcriptional regulation of NO 3 - transporters and plasma membrane H+-ATPase in response to the available concentration of the nutrient. In this study, cucumber plants were grown hydroponically and exposed to increasing concentrations of Cu (i.e., 0.2, 5, 20, 30, and 50 µM) to investigate their ability to respond to and acquire NO 3 - . To this end, the kinetics of substrate uptake and the transcriptional modulation of the molecular entities involved in the process have been assessed. Results showed that the inducibility of the high-affinity transport system was significantly affected by increasing Cu concentrations; at Cu levels higher than 20 µM, plants demonstrated either strongly reduced or abolished NO 3 - uptake activity. Nevertheless, the transcriptional modulation of both the nitrate transporter CsNRT2.1 and the accessory protein CsNRT3.1 was not coherent with the hindered NO 3 - uptake activity. On the contrary, CsHA2 was downregulated, thus suggesting that a possible impairment in the generation of the proton gradient across the root PM could be the cause of the abolishment of NO 3 - uptake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA