Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35229870

RESUMO

Interaction between tumor cells and immune cells determined highly heterogeneous microenvironments across patients, leading to substantial variation in clinical benefits from immunotherapy. Somatic gene mutations were found not only to elicit adaptive immunity but also to influence the composition of tumor immune microenvironment and various processes of antitumor immunity. However, due to an incomplete view of associations between gene mutations and immunophenotypes, how tumor cells shape the immune microenvironment and further determine the clinical benefit of immunotherapy is still unclear. To address this, we proposed a computational approach, inference of mutation effect on immunophenotype by integrated gene set enrichment analysis (MEIGSEA), for tracing back the genomic factor responsible for differences in immunophenotypes. MEIGSEA was demonstrated to accurately identify the previous confirmed immune-associated gene mutations, and systematic evaluation in simulation data further supported its performance. We used MEIGSEA to investigate the influence of driver gene mutations on the infiltration of 22 immune cell types across 19 cancers from The Cancer Genome Atlas. The top associated gene mutations with infiltration of CD8 T cells, such as CASP8, KRAS and EGFR, also showed extensive impact on other immune components; meanwhile, immune effector cells shared critical gene mutations that collaboratively contribute to shaping distinct tumor immune microenvironment. Furthermore, we highlighted the predictive capacity of gene mutations that are positively associated with CD8 T cells for the clinical benefit of immunotherapy. Taken together, we present a computational framework to help illustrate the potential of somatic gene mutations in shaping the tumor immune microenvironment.


Assuntos
Neoplasias , Microambiente Tumoral , Biomarcadores Tumorais/genética , Linfócitos T CD8-Positivos , Humanos , Imunoterapia , Mutação , Neoplasias/genética , Microambiente Tumoral/genética
2.
Stem Cells ; 41(2): 111-125, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583266

RESUMO

Glioblastoma stem cells (GSCs) contributed to the progression, treatment resistance, and relapse of glioblastoma (GBM). However, current researches on GSCs were performed usually outside the human tumor microenvironment, ignoring the importance of the cellular states of primary GSCs. In this study, we leveraged single-cell transcriptome sequencing data of 6 independent GBM cohorts from public databases, and combined lineage and stemness features to identify primary GSCs. We dissected the cell states of GSCs and correlated them with the clinical outcomes of patients. As a result, we constructed a cellular hierarchy where GSCs resided at the center. In addition, we identified and characterized 2 different and recurrent GSCs subpopulations: proliferative GSCs (pGSCs) and quiescent GSCs (qGSCs). The pGSCs showed high cell cycle activity, indicating rapid cell division, while qGSCs showed a quiescent state. Then we traced the processes of tumor development by pseudo-time analysis and tumor phylogeny, and found that GSCs accumulated throughout the whole tumor development period. During the process, pGSCs mainly contributed to the early stage and qGSCs were enriched in the later stage. Finally, we constructed an 8-gene prognostic signature reflecting pGSCs activity and found that patients whose tumors were enriched for the pGSC signature had poor clinical outcomes. Our study highlights the primary GSCs heterogeneity and its correlation to tumor development and clinical outcomes, providing the potential targets for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Análise de Célula Única , Microambiente Tumoral/genética
3.
BMC Immunol ; 24(1): 52, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38082384

RESUMO

BACKGROUND: Cellular states of different immune cells can affect the activity of the whole immune microenvironment. METHODS: Here, leveraging reference profiles of microenvironment cell states that were constructed based on single-cell RNA-seq data of melanoma, we dissected the composition of microenvironment cell states across 463 skin cutaneous melanoma (SKCM) bulk samples through CIBERSORT-based deconvolution of gene expression profiles and revealed high heterogeneity of their distribution. Correspondence analysis on the estimated cellular fractions of melanoma bulk samples was performed to identify immune phenotypes. Based on the publicly available clinical survival and therapy data, we analyzed the relationship between immune phenotypes and clinical outcomes of melanoma. RESULTS: By analysis of the relationships among those cell states, we further identified three distinct tumor microenvironment immune phenotypes: "immune hot/active", "immune cold-suppressive" and "immune cold-exhausted". They were characterized by markedly different patterns of cell states: most notably the CD8 T Cytotoxic state, CD8 T Mixed state, B non-regulatory state and cancer-associated fibroblasts (CAFs), depicting distinct types of antitumor immune response (or immune activity). These phenotypes had prognostic significance for progression-free survival and implications in response to immune therapy in an independent cohort of anti-PD1 treated melanoma patients. CONCLUSIONS: The proposed strategy of leveraging single-cell data to dissect the composition of microenvironment cell states in individual bulk tumors can also extend to other cancer types, and our results highlight the importance of microenvironment cell states for the understanding of tumor immunity.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Perfilação da Expressão Gênica , Terapia de Imunossupressão , Fenótipo , Microambiente Tumoral , Transcriptoma , Prognóstico
4.
Genomics ; 114(4): 110412, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714828

RESUMO

Tumors are genetically heterogeneous and many mutations are actually present in subclonal populations. The clonal status of mutations is valuable for accurate prognosis, clinical management. The aim of this study was to identify the clonal status of somatic mutations and systematically evaluate their prognostic values across various cancer types. We totally identified 227 clonal and 432 subclonal mutations contributed to prognosis and demonstrated the importance of clonal status in improving mutation-related clinical guidance. We further developed a customized multi-step approach to identify gene-specific prognostic patterns of clonal status at pan-cancer level and found some cancer-specific prognostic patterns. The 'subclonal-dependent risk' subpattern was one of the most common subpatterns, it usually accompanied by high genomic in-stability and high extent of intra-tumor heterogeneity and could be used to improve the accuracy of prognostic analysis. Our results revealed the importance of clonal status, especially subclonal mutation in clinical survival.


Assuntos
Neoplasias , Evolução Clonal , Genômica , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia , Prognóstico
5.
Hum Mutat ; 43(12): 2187-2204, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36218010

RESUMO

The clonal mutations in driver genes enable cells to gradually acquire growth advantage in tumor development. Therefore, revealing the functions of clonal driver gene mutations is important. Here, we proposed the method FCMP that considered evolutionary dependencies to analyze the functions of clonal driver gene mutations in a single patient. Applying our method to five cancer types from The Cancer Genome Atlas, we identified specific functions and common functions of clonal driver gene mutations. We found that the clonal driver gene mutations in the same patient played multiple functions. We also found that clonal mutations in the same driver gene performed different functions in different patients. These findings suggested that the clonal driver gene mutations showed strong tumor heterogeneity. In the pan-cancer analysis, the immune-related functions for clonal driver gene mutations were shared by multiple cancer types. In addition, clonal mutations in some driver genes predicted the survival of patients in cancers.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia
6.
Brief Bioinform ; 20(1): 254-266, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28968730

RESUMO

Systematic sequencing of cancer genomes has revealed prevalent heterogeneity, with patients harboring various combinatorial patterns of genetic alteration. In particular, a phenomenon that a group of genes exhibits mutually exclusive patterns has been widespread across cancers, covering a broad spectrum of crucial cancer pathways. Recently, there is considerable evidence showing that, mutual exclusivity reflects alternative functions in tumor initiation and progression, or suggests adverse effects of their concurrence. Given its importance, numerous computational approaches have been proposed to study mutual exclusivity using genomic profiles alone, or by integrating networks and phenotypes. Some of them have been routinely used to explore genetic associations, which lead to a deeper understanding of carcinogenic mechanisms and reveals unexpected tumor vulnerabilities. Here, we present an overview of mutual exclusivity from the perspective of cancer genome. We describe the common hypothesis underlying mutual exclusivity, summarize the strategies for the identification of significant mutually exclusive patterns, compare the performance of representative algorithms from simulated data sets and discuss their common confounders.


Assuntos
Neoplasias/genética , Algoritmos , Neoplasias da Mama/genética , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados Genéticas/estatística & dados numéricos , Epistasia Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genômica/estatística & dados numéricos , Humanos , Bases de Conhecimento , Modelos Genéticos , Fenótipo
7.
Nucleic Acids Res ; 47(D1): D721-D728, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30289549

RESUMO

One of the most fundamental questions in biology is what types of cells form different tissues and organs in a functionally coordinated fashion. Larger-scale single-cell sequencing and biology experiment studies are now rapidly opening up new ways to track this question by revealing substantial cell markers for distinguishing different cell types in tissues. Here, we developed the CellMarker database (http://biocc.hrbmu.edu.cn/CellMarker/ or http://bio-bigdata.hrbmu.edu.cn/CellMarker/), aiming to provide a comprehensive and accurate resource of cell markers for various cell types in tissues of human and mouse. By manually curating over 100 000 published papers, 4124 entries including the cell marker information, tissue type, cell type, cancer information and source, were recorded. At last, 13 605 cell markers of 467 cell types in 158 human tissues/sub-tissues and 9148 cell makers of 389 cell types in 81 mouse tissues/sub-tissues were collected and deposited in CellMarker. CellMarker provides a user-friendly interface for browsing, searching and downloading markers of diverse cell types of different tissues. Furthermore, a summarized marker prevalence in each cell type is graphically and intuitively presented through a vivid statistical graph. We believe that CellMarker is a comprehensive and valuable resource for cell researches in precisely identifying and characterizing cells, especially at the single-cell level.


Assuntos
Bases de Dados Genéticas , Análise de Sequência/métodos , Análise de Célula Única/métodos , Software , Animais , Humanos , Camundongos , Análise de Sequência/normas , Análise de Célula Única/normas
8.
Brief Bioinform ; 18(2): 236-249, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-26944085

RESUMO

Long noncoding RNAs (lncRNAs) are emerging as a class of important regulators participating in various biological functions and disease processes. With the widespread application of next-generation sequencing technologies, large numbers of lncRNAs have been identified, producing plenty of lncRNA annotation resources in different contexts. However, at present, we lack a comprehensive overview of these lncRNA annotation resources. In this study, we reviewed 24 currently available lncRNA annotation resources referring to > 205 000 lncRNAs in over 50 tissues and cell lines. We characterized these annotation resources from different aspects, including exon structure, expression, histone modification and function. We found many distinct properties among these annotation resources. Especially, these resources showed diverse chromatin signatures, remarkable tissue and cell type dependence and functional specificity. Our results suggested the incompleteness and complementarity of current lncRNA annotations and the necessity of integration of multiple resources to comprehensively characterize lncRNAs. Finally, we developed 'LNCat' (lncRNA atlas, freely available at http://biocc.hrbmu.edu.cn/LNCat/), a user-friendly database that provides a genome browser of lncRNA structures, visualization of different resources from multiple angles and download of different combinations of lncRNA annotations, and supports rapid exploration, comparison and integration of lncRNA annotation resources. Overall, our study provides a comprehensive comparison of numerous lncRNA annotations, and can facilitate understanding of lncRNAs in human disease.


Assuntos
RNA Longo não Codificante/genética , Cromatina , Humanos , Anotação de Sequência Molecular
9.
Nucleic Acids Res ; 45(2): 567-582, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27899621

RESUMO

The accumulation of somatic genomic alterations that enables cells to gradually acquire growth advantage contributes to tumor development. This has the important implication of the widespread existence of cooperative genomic alterations in the accumulation process. Here, we proposed a computational method HCOC that simultaneously consider genetic context and downstream functional effects on cancer hallmarks to uncover somatic cooperative events in human cancers. Applying our method to 12 TCGA cancer types, we totally identified 1199 cooperative events with high heterogeneity across human cancers, and then constructed a pan-cancer cooperative alteration network. These cooperative events are associated with genomic alterations of some high-confident cancer drivers, and can trigger the dysfunction of hallmark associated pathways in a co-defect way rather than single alterations. We found that these cooperative events can be used to produce a prognostic classification that can provide complementary information with tissue-of-origin. In a further case study of glioblastoma, using 23 cooperative events identified, we stratified patients into molecularly relevant subtypes with a prognostic significance independent of the Glioma-CpG Island Methylator Phenotype (GCIMP). In summary, our method can be effectively used to discover cancer-driving cooperative events that can be valuable clinical markers for patient stratification.


Assuntos
Redes Reguladoras de Genes , Variação Genética , Genômica , Neoplasias/diagnóstico , Neoplasias/genética , Algoritmos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Genômica/métodos , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos , Estimativa de Kaplan-Meier , Mutação , Neoplasias/mortalidade , Prognóstico
10.
Mol Cancer ; 16(1): 129, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738804

RESUMO

BACKGROUND: Few long noncoding RNAs (lncRNAs) that act as oncogenic genes in breast cancer have been identified. METHODS: Oncogenic lncRNAs associated with tumourigenesis and worse survival outcomes were examined and validated in Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), respectively. Then, the potential biological functions and expression regulation of these lncRNAs were studied via bioinformatics and genome data analysis. Moreover, progressive breast cancer subtype-specific lncRNAs were investigated via high-throughput sequencing in our cohort and TCGA validation. To elucidate the mechanisms of the regulation of these lncRNAs, genomic alterations from the TCGA, Broad, Sanger and BCCRC data, as well as epigenetic modifications from GEO data, were then applied and examined to meet this objective. Finally, cell proliferation assays, flow cytometry analyses and TUNEL assays were applied to validate the oncogenic roles of these lncRNAs in vitro. RESULTS: A cluster of oncogenic lncRNAs that was upregulated in breast cancer tissue and was associated with worse survival outcomes was identified. These oncogenic lncRNAs are involved in regulating immune system activation and the TGF-beta and Jak-STAT signalling pathways. Moreover, TINCR, LINC00511, and PPP1R26-AS1 were identified as subtype-specific lncRNAs associated with HER-2, triple-negative and luminal B subtypes of breast cancer, respectively. The up-regulation of these oncogenic lncRNAs is mainly caused by gene amplification in the genome in breast cancer and other solid tumours. Finally, the knockdown of TINCR, DSCAM-AS1 or HOTAIR inhibited breast cancer cell proliferation, increased apoptosis and inhibited cell cycle progression in vitro. CONCLUSIONS: These findings enhance the landscape of known oncogenic lncRNAs in breast cancer and provide insights into their roles. This understanding may potentially aid in the comprehensive management of breast cancer.


Assuntos
Neoplasias da Mama/genética , Oncogenes/genética , RNA Longo não Codificante/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , Fator de Crescimento Transformador beta/genética , Regulação para Cima/genética
11.
Nucleic Acids Res ; 43(4): 1997-2007, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25653168

RESUMO

The driver genetic aberrations collectively regulate core cellular processes underlying cancer development. However, identifying the modules of driver genetic alterations and characterizing their functional mechanisms are still major challenges for cancer studies. Here, we developed an integrative multi-omics method CMDD to identify the driver modules and their affecting dysregulated genes through characterizing genetic alteration-induced dysregulated networks. Applied to glioblastoma (GBM), the CMDD identified a core gene module of 17 genes, including seven known GBM drivers, and their dysregulated genes. The module showed significant association with shorter survival of GBM. When classifying driver genes in the module into two gene sets according to their genetic alteration patterns, we found that one gene set directly participated in the glioma pathway, while the other indirectly regulated the glioma pathway, mostly, via their dysregulated genes. Both of the two gene sets were significant contributors to survival and helpful for classifying GBM subtypes, suggesting their critical roles in GBM pathogenesis. Also, by applying the CMDD to other six cancers, we identified some novel core modules associated with overall survival of patients. Together, these results demonstrate integrative multi-omics data can identify driver modules and uncover their dysregulated genes, which is useful for interpreting cancer genome.


Assuntos
Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genes Neoplásicos , Genômica/métodos , Glioblastoma/genética , Glioblastoma/mortalidade , Humanos , Mapeamento de Interação de Proteínas , Análise de Sobrevida
12.
Genomics ; 104(2): 70-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25063529

RESUMO

MicroRNAs have been identified as important regulators involved in biological processes and human diseases. We proposed a computational approach to systematic identification of active promoters of miRNAs by active models using epigenetic characteristics at active promoters of protein-coding genes together with a genomic context-based filtering step in nine human cell types, which were validated to exhibit greater conservation, more overlap with CAGE-identified TSSs, more conserved TFBSs and higher transcription factor binding signal intensities. Furthermore, expression analysis showed discordance between transcriptional activation of miRNAs and expression of their precursor and mature forms, indicating that precursor and mature miRNA expression is insufficient to account for transcriptional activation of miRNAs. Compared to other methods, our approach identified higher percentages of active miRNAs with CAGE-detected TSS activity and primary transcript expression, further supporting the validity of our approach, which will be valuable to understand the biological roles of miRNAs in specific cell contexts.


Assuntos
Epigênese Genética , MicroRNAs/genética , Ativação Transcricional , Linhagem Celular Tumoral , Biologia Computacional , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Marcadores Genéticos , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Logísticos , Modelos Moleculares , Regiões Promotoras Genéticas
13.
Nucleic Acids Res ; 40(16): 7653-65, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22705797

RESUMO

Accumulating evidence indicates that microRNAs (miRNAs) can function as oncogenes or tumor suppressor genes by controlling few key targets, which in turn contribute to the pathogenesis of cancer. The identification of cancer-related key miRNA-target interactions remains a challenge. We performed a systematic analysis of known cancer-related key interactions manually curated from published papers based on different aspects including sequence, expression and function. Known cancer-related key interactions show more miRNA binding sites (especially for 8mer binding sites), more reliable binding of miRNA to the target region, higher expression associations and broader functional coverage when compared to non-disease-related interactions. Through integrating these sequence, expression and function features, we proposed a bioinformatics approach termed PCmtI to prioritize cancer-related key interactions. Ten-fold cross-validation of our approach revealed that it can achieve an area under the receiver operating characteristic curve of 93.9%. Subsequent leave-one-miRNA-out cross-validation also demonstrated the performance of our approach. Using miR-155 as a case, we found that the top ranked interactions can account for most functions of miR-155. In addition, we further demonstrated the power of our approach by 23 recently identified cancer-related key interactions. The approach described here offers a new way for the discovery of novel cancer-related key miRNA-target interactions.


Assuntos
Genômica/métodos , MicroRNAs/metabolismo , Neoplasias/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , MicroRNAs/química , Mapeamento de Interação de Proteínas , Software
14.
Biol Direct ; 18(1): 79, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993951

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play critical roles in cancer initiation and progression, which were critical components to maintain the dynamic balance of competing endogenous RNA (ceRNA) networks. Somatic copy number alterations (SCNAs) in the cancer genome could disturb the transcriptome level of miRNA to deregulate this balance. However, the driving effects of SCNAs of miRNAs were insufficiently understood. METHODS: In this study, we proposed a method to dissect the functional roles of miRNAs under different copy number states and identify driver miRNAs by integrating miRNA SCNAs profile, miRNA-target relationships and expression profiles of miRNA, mRNA and lncRNA. RESULTS: Applying our method to 813 TCGA breast cancer (BRCA) samples, we identified 29 driver miRNAs whose SCNAs significantly and concordantly regulated their own expression levels and further inversely dysregulated expression levels of their targets or disturbed the miRNA-target networks they directly involved. Based on miRNA-target networks, we further constructed dynamic ceRNA networks driven by driver SCNAs of miRNAs and identified three different patterns of SCNA interference in the miRNA-mediated dynamic ceRNA networks. Survival analysis of driver miRNAs showed that high-level amplifications of four driver miRNAs (including has-miR-30d-3p, has-mir-30b-5p, has-miR-30d-5p and has-miR-151a-3p) in 8q24 characterized a new BRCA subtype with poor prognosis and contributed to the dysfunction of cancer-associated hallmarks in a complementary way. The SCNAs of driver miRNAs across different cancer types contributed to the cancer development by dysregulating different components of the same cancer hallmarks, suggesting the cancer specificity of driver miRNA. CONCLUSIONS: These results demonstrate the efficacy of our method in identifying driver miRNAs and elucidating their functional roles driven by endogenous SCNAs, which is useful for interpreting cancer genomes and pathogenic mechanisms.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Variações do Número de Cópias de DNA , Redes Reguladoras de Genes , Transcriptoma , Neoplasias da Mama/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica
15.
Mol Oncol ; 17(11): 2472-2490, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37491836

RESUMO

High heterogeneity in genome and phenotype of cancer populations made it difficult to apply population-based common driver genes to the diagnosis and treatment of cancer individuals. Characterizing and identifying the personalized driver mechanism for glioblastoma multiforme (GBM) individuals were pivotal for the realization of precision medicine. We proposed an integrative method to identify the personalized driver gene sets by integrating the profiles of gene expression and genetic alterations in cancer individuals. This method coupled genetic algorithm and random walk to identify the optimal gene sets that could explain abnormality of transcriptome phenotype to the maximum extent. The personalized driver gene sets were identified for 99 GBM individuals using our method. We found that genomic alterations in between one and seven driver genes could maximally and cumulatively explain the dysfunction of cancer hallmarks across GBM individuals. The driver gene sets were distinct even in GBM individuals with significantly similar transcriptomic phenotypes. Our method identified MCM4 with rare genetic alterations as previously unknown oncogenic genes, the high expression of which were significantly associated with poor GBM prognosis. The functional experiments confirmed that knockdown of MCM4 could significantly inhibit proliferation, invasion, migration, and clone formation of the GBM cell lines U251 and U118MG, and overexpression of MCM4 significantly promoted the proliferation, invasion, migration, and clone formation of the GBM cell line U87MG. Our method could dissect the personalized driver genetic alteration sets that are pivotal for developing targeted therapy strategies and precision medicine. Our method could be extended to identify key drivers from other levels and could be applied to more cancer types.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Transcriptoma/genética , Genômica , Mutação , Perfilação da Expressão Gênica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica
16.
Genomics ; 98(1): 64-71, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21515357

RESUMO

Expression data can reveal subtle transcriptional changes that mediate the clinical phenotype of the disease resulting from interaction between genetic and environmental factors, which offers us a new perspective to prioritize candidate genes. Here, we proposed a novel differential expression pattern (DEP)-based approach integrating numerous disease-specific expression data sets for prioritizing candidate genes. Using breast cancer as a case study, we validated the efficiency of our approach through integrating 12 breast cancer-related expression data sets based on the leave-one-out cross-validation. Particularly, prioritization based on subtype-specific expression data sets could generate significantly higher performance. The performance could be continually improved with the increasing expression data sets regardless of platform heterogeneity. We further validated the robustness of this approach by application to prostate cancer. Additionally, our approach showed higher performance in comparison with other expression-based approaches and better capability of identification of less well-studied disease genes in comparison with other integration-based approaches.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Humanos , Masculino
17.
Sci Rep ; 12(1): 10641, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739271

RESUMO

Differences in genetic molecular features including mutation, copy number alterations and DNA methylation, can explain interindividual variability in response to anti-cancer drugs in cancer patients. However, identifying genetic alteration-driven genes and characterizing their functional mechanisms in different cancer types are still major challenges for cancer studies. Here, we systematically identified functional regulations between genetic alteration-driven genes and drug target genes and their potential prognostic roles in breast cancer. We identified two mutation and copy number-driven gene pairs (PARP1-ACSL1 and PARP1-SRD5A3), three DNA methylation-driven gene pairs (PRLR-CDKN1C, PRLR-PODXL2 and PRLR-SRD5A3), six gene pairs between mutation-driven genes and drug target genes (SLC19A1-SLC47A2, SLC19A1-SRD5A3, AKR1C3-SLC19A1, ABCB1-SRD5A3, NR3C2-SRD5A3 and AKR1C3-SRD5A3), and four copy number-driven gene pairs (ADIPOR2-SRD5A3, CASP12-SRD5A3, SLC39A11-SRD5A3 and GALNT2-SRD5A3) that all served as prognostic biomarkers of breast cancer. In particular, RARP1 was found to be upregulated by simultaneous copy number amplification and gene mutation. Copy number deletion and downregulated expression of ACSL1 and upregulation of SRD5A3 both were observed in breast cancers. Moreover, copy number deletion of ACSL1 was associated with increased resistance to PARP inhibitors. PARP1-ACSL1 pair significantly correlated with poor overall survival in breast cancer owing to the suppression of the MAPK, mTOR and NF-kB signaling pathways, which induces apoptosis, autophagy and prevents inflammatory processes. Loss of SRD5A3 expression was also associated with increased sensitivity to PARP inhibitors. The PARP1-SRD5A3 pair significantly correlated with poor overall survival in breast cancer through regulating androgen receptors to induce cell proliferation. These results demonstrate that genetic alteration-driven gene pairs might serve as potential biomarkers for the prognosis of breast cancer and facilitate the identification of combination therapeutic targets for breast cancers.


Assuntos
Neoplasias da Mama , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Variações do Número de Cópias de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Inibidores de Poli(ADP-Ribose) Polimerases , Prognóstico
18.
Front Genet ; 12: 654736, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163522

RESUMO

Somatic copy-number alterations (SCNAs) are major contributors to cancer development that are pervasive and highly heterogeneous in human cancers. However, the driver roles of SCNAs in cancer are insufficiently characterized. We combined network propagation and linear regression models to design an integrative strategy to identify driver SCNAs and dissect the functional roles of SCNAs by integrating profiles of copy number and gene expression in lower-grade glioma (LGG). We applied our strategy to 511 LGG patients and identified 98 driver genes that dysregulated 29 cancer hallmark signatures, forming 143 active gene-hallmark pairs. We found that these active gene-hallmark pairs could stratify LGG patients into four subtypes with significantly different survival times. The two new subtypes with similar poorest prognoses were driven by two different gene sets (one including EGFR, CDKN2A, CDKN2B, INFA8, and INFA5, and the other including CDK4, AVIL, and DTX3), respectively. The SCNAs of the two gene sets could disorder the same cancer hallmark signature in a mutually exclusive manner (including E2F_TARGETS and G2M_CHECKPOINT). Compared with previous methods, our strategy could not only capture the known cancer genes and directly dissect the functional roles of their SCNAs in LGG, but also discover the functions of new driver genes in LGG, such as IFNA5, IFNA8, and DTX3. Additionally, our method can be applied to a variety of cancer types to explore the pathogenesis of driver SCNAs and improve the treatment and diagnosis of cancer.

19.
Cancer Med ; 10(14): 4977-4993, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34076361

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD), as the most common subtype of lung cancer, is the leading cause of cancer deaths in the world. The accumulation of driver gene mutations enables cancer cells to gradually acquire growth advantage. Therefore, it is important to understand the functions and interactions of driver gene mutations in cancer progression. METHODS: We obtained gene mutation data and gene expression profile of 506 LUAD tumors from The Cancer Genome Atlas (TCGA). The subtypes of tumors with driver gene mutations were identified by consensus cluster analysis. RESULTS: We found 21 significantly mutually exclusive pairs consisting of 20 genes among 506 LUAD patients. Because of the increased transcriptomic heterogeneity of mutations, we identified subtypes among tumors with non-silent mutations in driver genes. There were 494 mutually exclusive pairs found among driver gene mutations within different subtypes. Furthermore, we identified functions of mutually exclusive pairs based on the hypothesis of functional redundancy of mutual exclusivity. These mutually exclusive pairs were significantly enriched in nuclear division and humoral immune response, which played crucial roles in cancer initiation and progression. We also found 79 mutually exclusive triples among subtypes of tumors with driver gene mutations, which were key roles in cell motility and cellular chemical homeostasis. In addition, two mutually exclusive triples and one mutually exclusive triple were associated with the overall survival and disease-specific survival of LUAD patients, respectively. CONCLUSIONS: We revealed novel mutual exclusivity and generated a comprehensive functional landscape of driver gene mutations, which could offer a new perspective to understand the mechanisms of cancer development and identify potential biomarkers for LUAD therapy.


Assuntos
Adenocarcinoma de Pulmão/genética , Progressão da Doença , Neoplasias Pulmonares/genética , Mutação/genética , Transcriptoma/genética , Adenocarcinoma de Pulmão/mortalidade , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Heterogeneidade Genética , Fenômenos Genéticos , Humanos , Neoplasias Pulmonares/mortalidade , Mutação/fisiologia
20.
Front Immunol ; 12: 758288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804045

RESUMO

The infiltration of tumor-reactive T cells in the tumor site is associated with better survival and immunotherapy response. However, tumor-reactive T cells were often represented by the infiltration of total CD8+ T cells, which was confounded by the presence of bystander T cells. To identify tumor-reactive T cells at the cancer lesion, we performed integration analyses of three scRNA-seq data sets of T cells in melanoma. Extensive heterogeneous functional states of T cells were revealed in the tumor microenvironment. Among these states, we identified a subset of tumor-reactive T cells which specifically expressed tumor-reactive markers and T cell activation signature, and were strongly enriched for larger T cell receptor (TCR) clones. We further identified and validated a tumor-reactive T cell signature (TRS) to evaluate the tumor reactivity of T cells in tumor patients. Patients with high TRS scores have strong immune activity and high mutation burden in the TCGA-SKCM cohort. We also demonstrated a significant association of the TRS with the clinical outcomes of melanoma patients, with higher TRS scores representing better survival, which was validated in four external independent cohorts. Furthermore, the TRS scores exhibited greater performance on prognosis prediction than infiltration levels of CD8+ T cells and previously published prognosis-related signatures. Finally, we observed the capability of TRS to predict immunotherapy response in melanoma. Together, based on integrated analysis of single-cell RNA-sequencing, we developed and validated a tumor-reactive-related signature that demonstrated significant association with clinical outcomes and response to immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/genética , Análise de Célula Única , Subpopulações de Linfócitos T/imunologia , Transcriptoma , Sequência de Bases , Linfócitos T CD8-Positivos/metabolismo , Células Clonais , Conjuntos de Dados como Assunto , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/metabolismo , Melanoma/imunologia , Prognóstico , RNA Neoplásico/genética , Receptores de Antígenos de Linfócitos T/genética , Subpopulações de Linfócitos T/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA