Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(22): 15453-15463, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795043

RESUMO

In contrast to the asymmetric synthesis of molecules with a single stereocenter or 1,2-adjacent stereocenters, the simultaneous construction of acyclic 1,3-nonadjacent stereocenters via a single catalyst in an enantioselective and diastereoselective manner remains a formidable challenge. Here, we demonstrate the enantioselective and diastereodivergent construction of 1,3-nonadjacent stereocenters through Ni-catalyzed reductive cyclization/cross-coupling of alkene-tethered aryl bromides and α-bromoamides, which represents the major remaining stereochemical challenge of cyclization/difunctionalization of alkenes. Using Ming-Phos as ligand, a diverse set of oxindoles containing 1,3-nonadjacent stereocenters were obtained with high levels of enantio- and diastereoselectivity. Mechanistic experiments and density functional theory calculations indicate that magnesium salt plays a key role in controlling the diastereoselectivity. Furthermore, another set of complementary stereoisomeric products were constructed from the same set of starting materials using Ph-Phox as ligand.

2.
Acc Chem Res ; 56(5): 515-535, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36688822

RESUMO

ConspectusThe use of quaternary stereocenters during lead candidate optimization continues to grow because of improved physiochemical and pharmacokinetic profiles of compounds with higher sp3 fraction. Pd-catalyzed redox-neutral alkene difunctionalization involving carbopalladation of alkenes followed by nucleophilic-trapping σ-alkyl-palladium intermediates has been developed as an efficient method to construct quaternary stereocenters. However, the low chemoselectivity and air sensitivity of organometallic nucleophiles, as well as their low availability and accessibility, limit the scope of application of this elegant strategy. Recently, Ni-catalyzed reductive cross-coupling has evolved into a privileged strategy to easily construct valuable C(sp3)-C bonds. Despite great progress, the enantioselective coupling of C(sp3) electrophiles still relies on activated or functionalized alkyl precursors, which are often unstable and require multiple steps to prepare. Therefore, Ni-catalyzed reductive difunctionalization of alkenes via selective cyclization/cross-coupling was developed. This strategy not only offers a robust and practical alternative for traditional redox-neutral alkene difunctionalization but also provides strategic complementarity for reductive cross-coupling of activated alkyl electrophiles. In this Account, we summarize the latest results from our laboratory on this topic. These findings mainly include our explorations in modulating the enantioselectivity and cyclization mode of reductive cyclization/cross-couplings.We will first discuss Ni-catalyzed enantioselective reductive cyclization/cross-coupling to construct valuable chiral heterocycles with quaternary stereocenters and focus on the effects of ligands, reductants, and additives and their roles in reductive cross-coupling. A wide range of electrophiles have been explored, including aryl halides, vinyl halides, alkynyl halides, gem-difluoroalkenes, CO2, trifluoromethyl alkenes, and cyano electrophiles. The synthetic potential of this approach has also been demonstrated in the synthesis of biologically active natural products and drug molecules. Second, we will detail how to tune the steric effects of nickel catalysts by modifying bipyridine ligands for regiodivergent cyclization/cross-couplings. Specifically, the use of bidentate ligands favors exo-selective cyclization/cross-coupling, while the use of a carboxylic acid-modified bipyridine ligand permits endo-selective cyclization/cross-coupling. We will also show how to activate the amide substrate by altering the electronic and steric properties of substituents on the nitrogen, thereby enabling the nucleophilic addition of aryl halides to amide carbonyls. Further investigation of ligand properties has led to tunable cyclization/cross-couplings (addition to the amide carbonyl vs 7-endo-cyclization) for the divergent synthesis of pharmacologically important 2-benzazepine frameworks. Finally, we serendipitously discover that modifying the ligands of nickel catalysts and changing the oxidation state of nickel can control the migratory aptitude of different groups, thus providing a switchable skeletal rearrangement strategy. This transformation is of high synthetic value because it represents a conceptually unprecedented new approach to C-C bond activation. Thus, this Account not only summarizes synthetic methods that allow the formation of valuable chiral heterocycles with quaternary stereocenters using a wide variety of electrophiles but also provides insight into the relationship between ligand structure, substrate, and cyclization selectivity.

3.
J Am Chem Soc ; 145(9): 5231-5241, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812098

RESUMO

The selective functionalization of ubiquitous but inert C-H bonds is highly appealing in synthetic chemistry, but the direct transformation of hydrocarbons lacking directing groups into high-value chiral molecules remains a formidable challenge. Herein, we develop an enantioselective C(sp3)-H functionalization of undirected oxacycles via photo-HAT/nickel dual catalysis. This protocol provides a practical platform for the rapid construction of high-value and enantiomerically enriched oxacycles directly from simple and abundant hydrocarbon feedstocks. The synthetic utility of this strategy is further demonstrated in the late-stage functionalization of natural products and the synthesis of many pharmaceutically relevant molecules. Experimental and density functional theory calculation studies provide detailed insights into the mechanism and the origin of enantioselectivity for the asymmetric C(sp3)-H functionalization.

4.
J Am Chem Soc ; 144(26): 11626-11637, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35603358

RESUMO

Skeletal rearrangement that changes the connectivity of the molecule via cleavage and reorganization of carbon-carbon bonds is a fundamental and powerful strategy in complex molecular assembly. Because of the lack of effective methods to control the migratory tendency of different groups, achieving switchable selectivity in skeletal rearrangement has been a long-standing quest. Metal-based dyotropic rearrangement provides a unique opportunity to address this challenge. However, switchable dyotropic rearrangement remains unexplored. Herein, we show that such a problem could be solved by modifying the ligands on the metal catalyst and changing the oxidation states of the metal to control the migratory aptitude of different groups, thereby providing a ligand-controlled, switchable skeletal rearrangement strategy. Experimental and density functional theory calculation studies prove this rational design. The rearrangement occurs only when the nickel(II) intermediate is reduced to a more nucleophilic nickel(I) species, and the sterically hindered iPrPDI ligand facilitates 1,2-aryl/Ni dyotropic rearrangement, while the terpyridine ligand promotes 1,2-acyl/Ni dyotropic rearrangement. This method allows site-selective activation and reorganization of C-C bonds and has been applied for the divergent synthesis of four medicinally relevant fluorine-containing scaffolds from the same starting material.


Assuntos
Flúor , Níquel , Carbono , Catálise , Fluoretos , Ligantes , Níquel/química
5.
Angew Chem Int Ed Engl ; 61(25): e202201574, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35385598

RESUMO

Ligand-directed divergent synthesis can transform common starting materials into distinct molecular scaffolds by simple tuning different ligands. This strategy enables the rapid construction of structurally rich collection of small molecules for biological evaluation and reveals novel modes of catalytic transformation, representing one of the most sought-after challenges in synthetic chemistry. We herein report a Ni-catalyzed ligand-controlled tunable cyclization/cross-couplings for the divergent synthesis of pharmacologically important 2-benzazepine frameworks. The bidentate ligand facilitates the nucleophilic addition of the aryl halides to the amide carbonyl, followed by 1,4-acyl transfer and cross-coupling to obtain 2-benzazepin-5-ones and benzo[c]pyrano[2,3-e]azepines. The tridentate ligand promotes the selective 7-endo cyclization/cross-coupling to access to 2-benzazepin-3-ones. The protocol operates under mild reaction conditions with divergent cyclization patterns that can be easily modulated through the ligand backbone.


Assuntos
Amidas , Benzazepinas , Amidas/química , Catálise , Ciclização , Ligantes
6.
J Am Chem Soc ; 143(27): 10282-10291, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34162201

RESUMO

Transition-metal-catalyzed dicarbofunctionalization of alkenes involving intramolecular Heck cyclization followed by intermolecular cross-coupling has emerged as a powerful engine for building heterocycles with sterically congested quaternary carbon centers. However, only exo-cyclization/cross-coupling products can be obtained; endo-selective cyclization/cross-coupling has not been reported yet and still poses a formidable challenge. We herein report the first example of catalyst-controlled dicarbofunctionalization of alkenes for the regiodivergent synthesis of five- and six-membered benzo-fused lactams bearing all-carbon quaternary centers. Using a chiral Pyrox- or Phox-type bidentate ligand, 5-exo cyclization/cross-couplings proceed favorably to produce indole-2-ones in good yields with excellent regioselectivity and enantioselectivities (up to 98% ee). When C6-carboxylic acid-modified 2,2'-bipyridine was used as the ligand, 3,4-dihydroquinolin-2-ones were obtained in good yields through 6-endo-selective cyclization/cross-coupling processes. This transformation is modular and tolerant of a variety of functional groups. The ligand rather than the substrate structures precisely dictates the regioselectivity pattern. Moreover, the synthetic value of this regiodivergent protocol was demonstrated by the preparation of biologically relevant molecules and structural scaffolds.

7.
Angew Chem Int Ed Engl ; 58(6): 1562-1573, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-29959826

RESUMO

The enantioselective synthesis of molecules containing quaternary stereocenters is a field of intense research interest and development. Among the known organic transformations, carbopalladation-initiated domino transformations constitutes a general method for the construction of compounds containing cyclic or spiro quaternary stereocenters. In this Minireview, recent achievements in palladium-catalyzed domino Heck/C-H functionalizations and developments in enantioselective carbopalladation-initiated domino processes are summarized.

8.
Org Biomol Chem ; 14(10): 2924-9, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26867940

RESUMO

A mild and efficient tandem benzo[d]thiazole directed C-H iodination and trifluoromethylthiolation for the synthesis of ortho-trifluoromethylthiolated 2-arylbenzo[d]thiazoles have been developed using AgSCF3 as a coupling partner. The reaction exhibits a diverse array of functional group tolerance giving the desired products in good to excellent yields. Regioselective trifluoromethylthiolation was observed at the less sterically hindered site when the phenyl ring of the substrate possesses a methyl group at its meta position.

9.
Org Lett ; 20(4): 921-924, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29373029

RESUMO

The first nickel-catalyzed domino Heck cyclization/Suzuki coupling reaction for the synthesis of 3,3-disubstituted oxindoles bearing quaternary all-carbon centers is reported. A wide range of electrophiles, such as aryl iodides, bromides, triflates, and chlorides, are all compatible with the reaction conditions. Moreover, cheap aryl esters, which undergo catalytic C-O bond cleavage, could also be employed as electrophiles. The approach shows good yields and broad scope, complementing a more practical and sustainable alternative to the conventional palladium-based analogues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA