RESUMO
Distributed environmental research infrastructures are important to support assessments of the effects of global change on landscapes, ecosystems and society. These infrastructures need to provide continuity to address long-term change, yet be flexible enough to respond to rapid societal and technological developments that modify research priorities. We used a horizon scanning exercise to identify and prioritize emerging research questions for the future development of ecosystem and socio-ecological research infrastructures in Europe. Twenty research questions covered topics related to (i) ecosystem structures and processes, (ii) the impacts of anthropogenic drivers on ecosystems, (iii) ecosystem services and socio-ecological systems and (iv), methods and research infrastructures. Several key priorities for the development of research infrastructures emerged. Addressing complex environmental issues requires the adoption of a whole-system approach, achieved through integration of biotic, abiotic and socio-economic measurements. Interoperability among different research infrastructures needs to be improved by developing standard measurements, harmonizing methods, and establishing capacities and tools for data integration, processing, storage and analysis. Future research infrastructures should support a range of methodological approaches including observation, experiments and modelling. They should also have flexibility to respond to new requirements, for example by adjusting the spatio-temporal design of measurements. When new methods are introduced, compatibility with important long-term data series must be ensured. Finally, indicators, tools, and transdisciplinary approaches to identify, quantify and value ecosystem services across spatial scales and domains need to be advanced.
Assuntos
Ecologia , Ecossistema , Europa (Continente)RESUMO
Iron Formations (IF) are threatened by mining, particularly the Mesovoid Shallow Substratum (MSS), an understudied subterranean environment. We evaluate the spatiotemporal patterns of subterranean fauna in MSS of iron duricrust (canga) in the Iron Quadrangle and Southern Espinhaço Range, southeastern Brazil. Samplings took place between July 2014 and June 2022 using five trap types. We sampled 108,005 individuals, 1,054 morphospecies, and seven phyla, globally the largest dataset on MSS in IF. Arthropoda represented 97% of all invertebrates sampled. We identified 31 troglomorphic organisms, primarily Arthropoda and Platyhelminthes. MSS traps were the most efficient method, capturing 80% of all invertebrates. Morphospecies were more prevalent in each locality than shared among localities. Species replacement was the main processes to spatial differences. Over time, we found a decrease of total dissimilarity and importance of species replacement for troglomorphic organisms. A positive correlation between spatial distance and compositional dissimilarity of invertebrates was found. Iron Quadrangle and Southern Espinhaço Range showed marked differences in the spatiotemporal patterns of subterranean fauna. Brazilian IF are threatened, with their biological significance not fully understood but highly endangered due their limited distribution. Conservation efforts require a comprehensive understanding of both biotic and abiotic factors shaping the entire IF ecosystem.
Assuntos
Biodiversidade , Ecossistema , Invertebrados , Animais , Brasil , Invertebrados/classificação , Espécies em Perigo de Extinção , Conservação dos Recursos Naturais , MineraçãoRESUMO
Subterranean ecosystems are among the most widespread environments on Earth, yet we still have poor knowledge of their biodiversity. To raise awareness of subterranean ecosystems, the essential services they provide, and their unique conservation challenges, 2021 and 2022 were designated International Years of Caves and Karst. As these ecosystems have traditionally been overlooked in global conservation agendas and multilateral agreements, a quantitative assessment of solution-based approaches to safeguard subterranean biota and associated habitats is timely. This assessment allows researchers and practitioners to understand the progress made and research needs in subterranean ecology and management. We conducted a systematic review of peer-reviewed and grey literature focused on subterranean ecosystems globally (terrestrial, freshwater, and saltwater systems), to quantify the available evidence-base for the effectiveness of conservation interventions. We selected 708 publications from the years 1964 to 2021 that discussed, recommended, or implemented 1,954 conservation interventions in subterranean ecosystems. We noted a steep increase in the number of studies from the 2000s while, surprisingly, the proportion of studies quantifying the impact of conservation interventions has steadily and significantly decreased in recent years. The effectiveness of 31% of conservation interventions has been tested statistically. We further highlight that 64% of the reported research occurred in the Palearctic and Nearctic biogeographic regions. Assessments of the effectiveness of conservation interventions were heavily biased towards indirect measures (monitoring and risk assessment), a limited sample of organisms (mostly arthropods and bats), and more accessible systems (terrestrial caves). Our results indicate that most conservation science in the field of subterranean biology does not apply a rigorous quantitative approach, resulting in sparse evidence for the effectiveness of interventions. This raises the important question of how to make conservation efforts more feasible to implement, cost-effective, and long-lasting. Although there is no single remedy, we propose a suite of potential solutions to focus our efforts better towards increasing statistical testing and stress the importance of standardising study reporting to facilitate meta-analytical exercises. We also provide a database summarising the available literature, which will help to build quantitative knowledge about interventions likely to yield the greatest impacts depending upon the subterranean species and habitats of interest. We view this as a starting point to shift away from the widespread tendency of recommending conservation interventions based on anecdotal and expert-based information rather than scientific evidence, without quantitatively testing their effectiveness.
Assuntos
Biodiversidade , Ecossistema , Cavernas , Conservação dos Recursos Naturais/métodos , Ecologia , Água DoceRESUMO
Relative humidity (RH) was measured at hourly intervals for approximately one year in two caves at seven stations near Playa del Carmen in Quintana Roo, Mexico. Sistema Muévelo Rico is a 1.1 km long cave with 12 entrances and almost no dark zone. Río Secreto (Tuch) is a large river cave with more than 40 km of passages, and an extensive dark zone. Given the need for cave specialists to adapt to saturated humidity, presumably by cuticular thinning, the major stress of RH would be its deviation from saturation. RH in Río Secreto (Tuch) was invariant at three sites and displayed short deviations from 100% RH at the other four sites. These deviations were concentrated at the end of the nortes and beginning of the rainy season. Three of the sites in Sistema Muévelo Rico showed a similar pattern although the timing of the deviations from 100% RH was somewhat displaced. Four sites in Sistema Muévelo Rico were more variable, and were analyzed using a measure of amount of time of deviation from 100% RH for each 24 hour period. Strong seasonality was evident but, remarkably, periods of constant high humidity were not the same at all sites. In most Sistema Muévelo Rico sites, there was a detectable 24 hour cycle in RH, although it was quite weak in about half of them. For Río Secreto (Tuch) only one site showed any sign of a 24 hour cycle. The troglomorphic fauna was more or less uniformly spread throughout the caves and did not concentrate in any one area or set of RH conditions. Compared to temperature, RH is much more constant, perhaps even more constant than the amount of light. However, changes in RH as a result of global warming may have a major negative effect on the subterranean fauna.
Assuntos
Cavernas , Umidade , México , Estações do Ano , Clima TropicalRESUMO
Hourly temperature was measured for approximately one year at 17 stations in three caves in Quintana Roo, Mexico. Thirteen of these stations were in the extensive twilight zones of all three caves. All seventeen stations showed seasonality in temperature with a 3°C drop during the Nortes season. Two of the caves, Muévelo Sabrosito and Muévelo Rico, showed greater variability during the winter months while in Río Secreto (Tuch) variability was greatest during the rainy season. Río Secreto is less open to the surface than the other two. All sites also showed a daily temperature cycle, although it was very faint in some Río Secreto (Tuch) sites. While temperature variability is diminished relative to surface variation, its temporal pattern is worthy of further study.
Assuntos
Cavernas/química , Temperatura , Clima Tropical , Ecossistema , México , Chuva , Estações do AnoRESUMO
Five decades ago, a landmark paper in Science titled The Cave Environment heralded caves as ideal natural experimental laboratories in which to develop and address general questions in geology, ecology, biogeography, and evolutionary biology. Although the 'caves as laboratory' paradigm has since been advocated by subterranean biologists, there are few examples of studies that successfully translated their results into general principles. The contemporary era of big data, modelling tools, and revolutionary advances in genetics and (meta)genomics provides an opportunity to revisit unresolved questions and challenges, as well as examine promising new avenues of research in subterranean biology. Accordingly, we have developed a roadmap to guide future research endeavours in subterranean biology by adapting a well-established methodology of 'horizon scanning' to identify the highest priority research questions across six subject areas. Based on the expert opinion of 30 scientists from around the globe with complementary expertise and of different academic ages, we assembled an initial list of 258 fundamental questions concentrating on macroecology and microbial ecology, adaptation, evolution, and conservation. Subsequently, through online surveys, 130 subterranean biologists with various backgrounds assisted us in reducing our list to 50 top-priority questions. These research questions are broad in scope and ready to be addressed in the next decade. We believe this exercise will stimulate research towards a deeper understanding of subterranean biology and foster hypothesis-driven studies likely to resonate broadly from the traditional boundaries of this field.
Assuntos
Cavernas , Ecologia , Adaptação Fisiológica , GenômicaRESUMO
Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.
Assuntos
Biodiversidade , Ecossistema , Mudança Climática , Europa (Continente)RESUMO
The decomposition of diversity into within site (α) and between site (ß) components is especially interesting in subterranean communities because of their isolated nature and limited dispersal potential The aquatic epikarst fauna, sampled from water drips in caves affords a unique opportunity to provide comparable, quantitative samples of a portion of the obligate subterranean dwelling fauna in multiple hierarchical levels. We focused on three interrelated questions-(1) what is the spatial pattern of epikarst species diversity; (2) how does species diversity partition between local, and regional components (nested and replacement); and (3) whether epikarst hotspots are subterranean hotspots in general. We analyzed the geographic pattern of species richness of 30 species of obligate subterranean copepods found in 81 drips in Slovenian caves in three karst regions-Alpine, Dinaric, and Isolated. Comparison of Chao1 and observed (Mao-tau) estimates of species richness indicated sampling in most drips was complete, but species accumulation curves indicated roughly half of the sites in the Dinaric karst had not reached an asymptote. Overall, within drip diversity accounted for three species, different drips in a cave another three, different caves in a region six species, and different regions accounted for the remaining 18 species. Sites in the Dinaric karst had much higher species richness than the other sites, which is in agreement with studies of other components of the subterranean fauna. The fauna associated with drips in Zupanova jama (jama = cave), in the east-central Dinaric karst was the richest found. While turnover explained the majority of ß-diversity, nestedness in the form of hotspot drips was important as well. A consequence is that a small number of drips largely determine cave and regional species diversity.