Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(5): e1009572, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015058

RESUMO

Perception of microbes by plants leads to dynamic reprogramming of the transcriptome, which is essential for plant health. The appropriate amplitude of this transcriptional response can be regulated at multiple levels, including chromatin. However, the mechanisms underlying the interplay between chromatin remodeling and transcription dynamics upon activation of plant immunity remain poorly understood. Here, we present evidence that activation of plant immunity by bacteria leads to nucleosome repositioning, which correlates with altered transcription. Nucleosome remodeling follows distinct patterns of nucleosome repositioning at different loci. Using a reverse genetic screen, we identify multiple chromatin remodeling ATPases with previously undescribed roles in immunity, including EMBRYO SAC DEVELOPMENT ARREST 16, EDA16. Functional characterization of the immune-inducible chromatin remodeling ATPase EDA16 revealed a mechanism to negatively regulate immunity activation and limit changes in redox homeostasis. Our transcriptomic data combined with MNase-seq data for EDA16 functional knock-out and over-expressor mutants show that EDA16 selectively regulates a defined subset of genes involved in redox signaling through nucleosome repositioning. Thus, collectively, chromatin remodeling ATPases fine-tune immune responses and provide a previously uncharacterized mechanism of immune regulation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Montagem e Desmontagem da Cromatina/imunologia , DNA Helicases/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Pseudomonas syringae/imunologia , Adenosina Trifosfatases/genética , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Cromatina/genética , DNA Helicases/genética , Homeostase , Nucleossomos/genética , Oxirredução , Estresse Oxidativo , Doenças das Plantas/microbiologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/fisiologia
2.
Nucleic Acids Res ; 48(11): 5953-5966, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32396165

RESUMO

The modification of histones by acetyl groups has a key role in the regulation of chromatin structure and transcription. The Arabidopsis thaliana histone acetyltransferase GCN5 regulates histone modifications as part of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) transcriptional coactivator complex. GCN5 was previously shown to acetylate lysine 14 of histone 3 (H3K14ac) in the promoter regions of its target genes even though GCN5 binding did not systematically correlate with gene activation. Here, we explored the mechanism through which GCN5 controls transcription. First, we fine-mapped its GCN5 binding sites genome-wide and then used several global methodologies (ATAC-seq, ChIP-seq and RNA-seq) to assess the effect of GCN5 loss-of-function on the expression and epigenetic regulation of its target genes. These analyses provided evidence that GCN5 has a dual role in the regulation of H3K14ac levels in their 5' and 3' ends of its target genes. While the gcn5 mutation led to a genome-wide decrease of H3K14ac in the 5' end of the GCN5 down-regulated targets, it also led to an increase of H3K14ac in the 3' ends of GCN5 up-regulated targets. Furthermore, genome-wide changes in H3K14ac levels in the gcn5 mutant correlated with changes in H3K9ac at both 5' and 3' ends, providing evidence for a molecular link between the depositions of these two histone modifications. To understand the biological relevance of these regulations, we showed that GCN5 participates in the responses to biotic stress by repressing salicylic acid (SA) accumulation and SA-mediated immunity, highlighting the role of this protein in the regulation of the crosstalk between diverse developmental and stress-responsive physiological programs. Hence, our results demonstrate that GCN5, through the modulation of H3K14ac levels on its targets, controls the balance between biotic and abiotic stress responses and is a master regulator of plant-environmental interactions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Homeostase , Lisina/metabolismo , Ácido Salicílico/metabolismo , Regiões 5' não Traduzidas/genética , Acetilação , Arabidopsis/imunologia , Histonas/química , Lisina/química , Imunidade Vegetal/genética , Regiões Promotoras Genéticas/genética , Transcrição Gênica
3.
J Exp Bot ; 72(12): 4565-4576, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33829257

RESUMO

The biocontrol agent Paenibacillus alvei K165 was previously shown to protect Arabidopsis thaliana plants against Verticillium dahliae. Here we show that K165 also confers inherited immune resistance to V. dahliae. By performing a histone acetyltransferases mutant screen, ChIP assays, and transcriptomic experiments, we were able to show that histone acetylation significantly contributes to the K165 biocontrol activity and establishment of inheritable resistance to V. dahliae. K165 treatment primed the expression of immune-related marker genes and the cinnamyl alcohol dehydrogenase gene CAD3 through the function of histone acetyltransferases. Our results reveal that offspring of plants treated with K165 have primed immunity and enhanced lignification, both contributing towards the K165-mediated inherited immune resistance. Thus, our study paves the way for the use of biocontrol agents for the establishment of inheritable resistance to agronomically important pathogens.


Assuntos
Paenibacillus , Verticillium , Ascomicetos , Resistência à Doença/genética , Gossypium , Paenibacillus/genética , Doenças das Plantas/genética
4.
J Exp Bot ; 72(20): 6920-6932, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34369570

RESUMO

Fruit maturation and softening are critical traits that control fruit shelf-life. In the climacteric tomato (Solanum lycopersicum L.) fruit, ethylene plays a key role in fruit ripening and softening. We characterized two related proteins with contrasting impact on ethylene production, ACC oxidase 1 (SlACO1) and SlE8. We found SlACO1 and SlE8 to be highly expressed during fruit ripening. To identify loss-of-function alleles, we analysed the tomato genetic diversity but we did not find any natural mutations impairing the function of these proteins. We also found the two loci evolving under purifying selection. To engineer hypomorphic alleles, we used TILLING (target-induced local lesions in genomes) to screen a tomato ethylmethane sulfonate-mutagenized population. We found 13 mutants that we phenotyped for ethylene production, shelf-life, firmness, conductivity, and soluble solid content in tomato fruits. The data demonstrated that slaco1-1 and slaco1-2 alleles could be used to improve fruit shelf-life, and that sle8-1 and sle8-2 alleles could be used to accelerate ripening. This study highlights further the importance of SlACO1 and SlE8 in ethylene production in tomato fruit and how they might be used for post-harvest fruit preservation or speeding up fruit maturation.


Assuntos
Solanum lycopersicum , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
PLoS Pathog ; 10(10): e1004496, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25393742

RESUMO

The downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) is a filamentous oomycete that invades plant cells via sophisticated but poorly understood structures called haustoria. Haustoria are separated from the host cell cytoplasm and surrounded by an extrahaustorial membrane (EHM) of unknown origin. In some interactions, including Hpa-Arabidopsis, haustoria are progressively encased by host-derived, callose-rich materials but the molecular mechanisms by which callose accumulates around haustoria remain unclear. Here, we report that PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1) is expressed at high levels in Hpa infected cells. Unlike other plasma membrane proteins, which are often excluded from the EHM, PDLP1 is located at the EHM in Hpa-infected cells prior to encasement. The transmembrane domain and cytoplasmic tail of PDLP1 are sufficient to convey this localization. PDLP1 also associates with the developing encasement but this association is lost when encasements are fully mature. We found that the pdlp1,2,3 triple mutant is more susceptible to Hpa while overexpression of PDLP1 enhances plant resistance, suggesting that PDLPs enhance basal immunity against Hpa. Haustorial encasements are depleted in callose in pdlp1,2,3 mutant plants whereas PDLP1 over-expression elevates callose deposition around haustoria and across the cell surface. These data indicate that PDLPs contribute to callose encasement of Hpa haustoria and suggests that the deposition of callose at haustoria may involve similar mechanisms to callose deposition at plasmodesmata.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Oomicetos/fisiologia , Doenças das Plantas/imunologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Interações Hospedeiro-Patógeno , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Plasmodesmos/metabolismo
6.
PLoS Pathog ; 10(10): e1004443, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25329884

RESUMO

Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Interações Hospedeiro-Patógeno/imunologia , Oomicetos/efeitos dos fármacos , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Ácido Salicílico/farmacologia , Proteínas de Arabidopsis/genética , Sequência de Bases/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Oomicetos/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo
7.
Plant J ; 69(2): 252-65, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21914011

RESUMO

Filamentous phytopathogens form sophisticated intracellular feeding structures called haustoria in plant cells. Pathogen effectors are likely to play a role in the establishment and maintenance of haustoria in addition to their better-characterized role in suppressing plant defence. However, the specific mechanisms by which these effectors promote virulence remain unclear. To address this question, we examined changes in subcellular architecture using live-cell imaging during the compatible interaction between the oomycete Hyaloperonospora arabidopsidis (Hpa) and its host Arabidopsis. We monitored host-cell restructuring of subcellular compartments within plant mesophyll cells during haustoria ontogenesis. Live-cell imaging highlighted rearrangements in plant cell membranes upon infection, in particular to the tonoplast, which was located close to the extra-haustorial membrane surrounding the haustorium. We also investigated the subcellular localization patterns of Hpa RxLR effector candidates (HaRxLs) in planta. We identified two major classes of HaRxL effector based on localization: nuclear-localized effectors and membrane-localized effectors. Further, we identified a single effector, HaRxL17, that associated with the tonoplast in uninfected cells and with membranes around haustoria, probably the extra-haustorial membrane, in infected cells. Functional analysis of selected effector candidates in planta revealed that HaRxL17 enhances plant susceptibility. The roles of subcellular changes and effector localization, with specific reference to the potential role of HaRxL17 in plant cell membrane trafficking, are discussed with respect to Hpa virulence.


Assuntos
Arabidopsis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Oomicetos/patogenicidade , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Proteínas/metabolismo , Sequência de Aminoácidos , Arabidopsis/parasitologia , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Núcleo Celular/metabolismo , Células Cultivadas , Regulação da Expressão Gênica de Plantas/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Células do Mesofilo/metabolismo , Dados de Sequência Molecular , Oomicetos/genética , Oomicetos/crescimento & desenvolvimento , Oomicetos/metabolismo , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas , Polimorfismo Genético/genética , Transporte Proteico , Proteínas/genética , Plântula/imunologia , Plântula/parasitologia , Plântula/fisiologia , Plântula/ultraestrutura , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/ultraestrutura , Vacúolos/metabolismo , Virulência
8.
Mol Plant Microbe Interact ; 26(7): 745-57, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23734779

RESUMO

The genome of the pathogenic oomycete Hyaloperonospora arabidopsidis is predicted to encode at least 134 high-confidence effectors (HaRxL) carrying the RxLR motif implicated in their translocation into plant cells. However, only four avirulence genes (ATR1, ATR13, ATR5, and ATR39) have been isolated. This indicates that identification of HaRxL effectors based on avirulence is low throughput. We aimed at rapidly identifying H. arabidopsidis effectors that contribute to virulence by developing methods to detect and quantify multiple candidates in bacterial mixed infections using either Illumina sequencing or capillary electrophoresis. In these assays, referred to here as in planta effector competition assays, we estimate the contribution to virulence of individual effectors by calculating the abundance of each HaRxL in the bacterial population recovered from leaves 3 days after inoculation relative to abundance in the initial mixed inoculum. We identified HaRxL that enhance Pseudomonas syringae pv. tomato DC3000 growth in some but not all Arabidopsis accessions. Further analysis showed that HaRxLL464, HaRxL75, HaRxL22, HaRxLL441, and HaRxL89 suppress pathogen-associated molecular pattern-triggered immunity (PTI) and localize to different subcellular compartments in Nicotiana benthamiana, providing evidence for a multilayered suppression of PTI by pathogenic oomycetes and molecular probes for the dissection of PTI.


Assuntos
Arabidopsis/parasitologia , Oomicetos/genética , Doenças das Plantas/imunologia , Pseudomonas syringae/crescimento & desenvolvimento , Motivos de Aminoácidos , Antibiose , Arabidopsis/citologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Eletroforese Capilar , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Folhas de Planta/citologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/parasitologia , Transporte Proteico , Proteínas/genética , Proteínas/metabolismo , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Proteínas Recombinantes de Fusão , Análise de Sequência de DNA , Nicotiana/citologia , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/microbiologia , Virulência/genética
9.
PLoS Pathog ; 7(11): e1002348, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072967

RESUMO

Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis). We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs) were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS) of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX) and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70%) of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL) showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether candidate effectors from eukaryotic pathogens can suppress/trigger plant defense mechanisms and to rank their effectiveness prior to subsequent mechanistic investigation.


Assuntos
Arabidopsis/imunologia , Oomicetos/metabolismo , Doenças das Plantas/imunologia , Proteínas/metabolismo , Pseudomonas syringae/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/microbiologia , Sistemas de Secreção Bacterianos , Brassica napus/imunologia , Brassica napus/microbiologia , Células Cultivadas , Regulação da Expressão Gênica de Plantas , Glucanos/biossíntese , Glucanos/metabolismo , Interações Hospedeiro-Patógeno , Oomicetos/genética , Oomicetos/crescimento & desenvolvimento , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/enzimologia , Pseudomonas syringae/imunologia , Proteínas Recombinantes de Fusão/metabolismo
10.
Front Plant Sci ; 9: 355, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616066

RESUMO

Relying on an immune system comes with a high energetic cost for plants. Defense responses in these organisms are therefore highly regulated and fine-tuned, permitting them to respond pertinently to the attack of a microbial pathogen. In recent years, the importance of the physical modification of chromatin, a highly organized structure composed of genomic DNA and its interacting proteins, has become evident in the research field of plant-pathogen interactions. Several processes, including DNA methylation, changes in histone density and variants, and various histone modifications, have been described as regulators of various developmental and defense responses. Herein, we review the state of the art in the epigenomic aspects of plant immunity, focusing on chromatin modifications, chromatin modifiers, and their physiological consequences. In addition, we explore the exciting field of understanding how plant pathogens have adapted to manipulate the plant epigenomic regulation in order to weaken their immune system and thrive in their host, as well as how histone modifications in eukaryotic pathogens are involved in the regulation of their virulence.

11.
Front Plant Sci ; 5: 671, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520730

RESUMO

One of the great challenges for food security in the 21st century is to improve yield stability through the development of disease-resistant crops. Crop research is often hindered by the lack of molecular tools, growth logistics, generation time and detailed genetic annotations, hence the power of model plant species. Our knowledge of plant immunity today has been largely shaped by the use of models, specifically through the use of mutants. We examine the importance of Arabidopsis and tomato as models in the study of plant immunity and how they help us in revealing a detailed and deep understanding of the various layers contributing to the immune system. Here we describe examples of how knowledge from models can be transferred to economically important crops resulting in new tools to enable and accelerate classical plant breeding. We will also discuss how models, and specifically transcriptomics and effectoromics approaches, have contributed to the identification of core components of the defense response which will be key to future engineering of durable and sustainable disease resistance in plants.

12.
J Vis Exp ; (84): e51095, 2014 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-24637539

RESUMO

Plants adapt quickly to changing environments due to elaborate perception and signaling systems. During pathogen attack, plants rapidly respond to infection via the recruitment and activation of immune complexes. Activation of immune complexes is associated with post-translational modifications (PTMs) of proteins, such as phosphorylation, glycosylation, or ubiquitination. Understanding how these PTMs are choreographed will lead to a better understanding of how resistance is achieved. Here we describe a protein purification method for nucleotide-binding leucine-rich repeat (NB-LRR)-interacting proteins and the subsequent identification of their post-translational modifications (PTMs). With small modifications, the protocol can be applied for the purification of other plant protein complexes. The method is based on the expression of an epitope-tagged version of the protein of interest, which is subsequently partially purified by immunoprecipitation and subjected to mass spectrometry for identification of interacting proteins and PTMs. This protocol demonstrates that: i). Dynamic changes in PTMs such as phosphorylation can be detected by mass spectrometry; ii). It is important to have sufficient quantities of the protein of interest, and this can compensate for the lack of purity of the immunoprecipitate; iii). In order to detect PTMs of a protein of interest, this protein has to be immunoprecipitated to get a sufficient quantity of protein.


Assuntos
Imunoprecipitação/métodos , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Centrifugação/métodos , Proteínas de Plantas/isolamento & purificação
13.
Plant Signal Behav ; 7(1): 145-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22301983

RESUMO

We examined changes to subcellular architecture during the compatible interaction between the biotroph pathogen Hyaloperonospora arabidopsidis (Hpa) and its host Arabidopsis. Live-cell imaging highlighted rearrangements in plant cell membranes upon infection. In particular, the tonoplast appeared close to the extrahaustorial membrane surrounding the haustorium. We investigated the subcellular localization patterns of Hpa RxLR effector candidates (HaRxLs) in planta. This subcellular localization screening led to the identification of an extrahaustorial membrane-localized effector, HaRxL17 that when stably expressed in Arabidopsis increased plant susceptibility to Hpa during compatible and incompatible interactions. Here, we report that the N-terminal part of HaRxL17 is sufficient to target the plant cell membranes. We showed that both C- or N-terminal fluorescent-tagged HaRxL17 localizes around Hpa haustoria, in early and in late stages of infection. As with Hpa infection, GFP-HaRxL17 also localizes around haustoria during infection with Albugo laibachii. Thus, HaRxL17 that increases plant susceptibility to Hpa during both compatible and incompatible interactions, localizes around oomycete haustoria when stably expressed in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Membrana/metabolismo , Oomicetos/fisiologia , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Interações Hospedeiro-Patógeno , Proteínas de Membrana/química , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA