Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 27(1): 30-35, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36479816

RESUMO

The splenic endothelial Weibel-palade bodies are one of the most important candidate organelles to release von Willebrand factor upon stimulation with desmopressin. However, the presence of functional desmopressin-specific receptor has not yet been demonstrated on endothelial cells. Experimental evidences are in favour of an indirect pro-haemostatic effect of desmopressin, but the exact mediator and its cellular origin are largely elusive. Here, we report partially hampered desmopressin response in a splenectomised severe haemophilia A/Beta Thalassemia patient without any genetic variant relevant to his incomplete desmopressin response. To further investigate the role of the spleen in this phenomenon, the release of VWF from desmopressin-treated human splenic endothelial cells was assessed in vitro. As a result, desmopressin induced the release of VWF from endothelial cells when the cells were co-cultured with non-classical (CD14dim /CD16++ ), but not other subtypes of monocytes or PBMCs. This in vitro study which resembles close proximity of endothelial cells of sinusoids to monocyte reservoir reside in parenchyma of subcapsular red pulp of the spleen sheds a light upon the role of this highly vascularized VWF-producing organ in driving indirect effect of desmopressin.


Assuntos
Hemofilia A , Hemostáticos , Humanos , Desamino Arginina Vasopressina/farmacologia , Fator de von Willebrand/genética , Monócitos , Baço , Células Endoteliais
2.
Med Oncol ; 40(9): 271, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594547

RESUMO

Although chemotherapy has increased the life expectancy of cancer patients, its toxic side effects remain a major challenge. Recently, organometallic compounds, such as Schiff base copper complexes, have become promising candidates for next-generation anticancer drugs owing to their unique anticancer activities. In this study, binuclear copper(II) complex-1 and mononuclear copper(II) complex-2 were examined to analyze their anticancer mechanisms further. For this purpose, a viability test, flow cytometry analysis of apoptosis and the cell cycle, migration assay, and gene expression analysis were performed. According to our results, complex-1 was more cytotoxic than complex-2 at 24/48-h intervals. Our findings also demonstrated that both complexes induced apoptosis at IC50 concentrations and arrested the cell cycle at the G1-S checkpoint. However, complex-1 accelerates cell cycle arrest at the sub-G0/G1 phase more than complex-2 does. Furthermore, gene expression analysis showed that only complex-1 induces the expression of p53. Interestingly, both complexes induced Bcl-2 overexpression. However, they did not affect MMP-13 expression. More interestingly, both complexes inhibited cell migration in different ways, including amoeboid and collective, by recruiting protease-independent pathways. This study confirmed that adding several metal cores and co-ligands increased the activity of the complex. It also appeared that Cu-containing complexes could prevent the migration of cancer cells through protease-independent pathways, which can be used for novel therapeutic purposes.


Assuntos
Cobre , Peptídeo Hidrolases , Humanos , Cobre/farmacologia , Proteína Supressora de Tumor p53/genética , Bases de Schiff/farmacologia , Apoptose , Movimento Celular
3.
Pathol Res Pract ; 216(11): 153220, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33007646

RESUMO

MicroRNAs (miRNAs) are single-stranded non-coding RNAs that regulate gene expression post-transcriptionally via mRNA degradation, or translational repression. They have important roles in normal development and homeostasis maintenance. Many studies have revealed that aberrant expression of miRNAs is associated with development of pathological conditions, including cancers. MiRNAs can either promote or suppress tumorigenesis based on the regulation of gene expression by targeting multiple molecules. In recent years, several miRNAs have been reported to be dysregulated in various cancers. Most recent findings have shown that miR-142 gene, located at chromosome 17q22, is involved in cellular migration, proliferation, and apoptosis in different human cancers. The present review discusses some molecular mechanisms and the expression status of miRNA-142 in the pathogenesis of various cancers.


Assuntos
Apoptose/genética , MicroRNAs/genética , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Neoplasias/patologia
4.
Environ Sci Pollut Res Int ; 26(1): 991-999, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30456618

RESUMO

Pro-thrombotic and inflammatory changes play an important role in cardiovascular morbidity and mortality, resulting from short-term exposure to fine particulate air-pollution. Part of those effects has been attributed to the ultra-fine particles (UFPs) that pass through the lung and directly contact blood-exposed and circulating cells. Despite UFP-induced platelet activation, it is unclear whether the penetrated particles exert any direct effect on endothelial cells. While exposure levels are boosting as a result of world-wide increases in economic development and desertification, which create more air-polluted regions, as well as increase in demands for synthetic UFPs in medicine and various industries, further studies on the health effects of these particles are required. In this study, human pulmonary and cardiac microvascular endothelial cells (MECs) have been exposed to 0.1, 1, 10, and 100 µg/ml suspensions of either a natural (carbon black) or a synthetic (multi-walled carbon nano-tubes) type of UFPs, in vitro. As a result, no changes in the levels of coagulation factor VIII, Von Willebrand factor, Interleukin 8, and P-selectin measured in the cells' supernatant were observed prior to and 6, 12, and 24 h after exposure. In parallel, the spatio-temporal effect of UFPs on cardiac MECs was evaluated by Transmission Electron Microscopy. Despite phagocytic uptake of pure UFPs observed on cellular sections of the treated cells, Weibel-Palade bodies remained intact in shape and similar in number when compared with the untreated cells. Our work shows that carbon itself is a non-toxic carrier for endothelial cells.


Assuntos
Carbono/toxicidade , Material Particulado/toxicidade , Testes de Toxicidade , Poluição do Ar , Células Endoteliais/efeitos dos fármacos , Fator VIII , Humanos , Pulmão , Selectina-P , Fator de von Willebrand
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA