RESUMO
Wnt/ß-catenin signaling is an ancient pathway in metazoans and controls various developmental processes, in particular the establishment and patterning of the embryonic primary axis. In vertebrates, a graded Wnt activity from posterior to anterior endows cells with positional information in the central nervous system. Recent studies in hemichordates support a conserved role for Wnt/ß-catenin in ectoderm antero-posterior patterning at the base of the deuterostomes. Ascidians are marine invertebrates and the closest relatives of vertebrates. By combining gain- and loss-of-function approaches, we have determined the role of Wnt/ß-catenin in patterning the three ectoderm derivatives of the ascidian Ciona intestinalis, central nervous system, peripheral nervous system and epidermis. Activating Wnt/ß-catenin signaling from gastrulation led to a dramatic transformation of the ectoderm with a loss of anterior identities and a reciprocal anterior extension of posterior identities, consistent with studies in other metazoans. Surprisingly, inhibiting Wnt signaling did not produce a reciprocal anteriorization of the embryo with a loss of more posterior identities like in vertebrates and hemichordate. Epidermis patterning was overall unchanged. Only the identity of two discrete regions of the central nervous system, the anteriormost and the posteriormost regions, were under the control of Wnt. Finally, the caudal peripheral nervous system, while being initially Wnt dependent, formed normally. Our results show that the Ciona embryonic ectoderm responds to Wnt activation in a manner that is compatible with the proposed function for this pathway at the base of the deuterostomes. However, possibly because of its fast and divergent mode of development that includes extensive use of maternal determinants, the overall antero-posterior patterning of the Ciona ectoderm is Wnt independent, and Wnt/ß-catenin signaling controls the formation of some sub-domains. Our results thus indicate that there has likely been a drift in the developmental systems controlling ectoderm patterning in the lineage leading to ascidians.
Assuntos
Padronização Corporal/fisiologia , Urocordados/crescimento & desenvolvimento , Via de Sinalização Wnt/fisiologia , Animais , Padronização Corporal/genética , Ciona intestinalis/crescimento & desenvolvimento , Ciona intestinalis/metabolismo , Ectoderma/metabolismo , Ectoderma/fisiologia , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento/genética , Transdução de Sinais , Urocordados/genética , Urocordados/metabolismo , Vertebrados , Proteínas WntRESUMO
Although marine sponges are known for their antimicrobial, antifungal and cytotoxic activity, very few studies have been carried out on endemic species of Martinique. Martinique is part of the Agoa Sanctuary, a marine protected area that includes the exclusive economic zones (EEZ) of the French Caribbean islands, making it an abundant source of marine species. To highlight the potential of this area for the discovery of marine biomolecules with antipathogenic and antitumor activities, we tested the aqueous and ethanolic extracts of sponge species Agelas clathrodes, Desmapsamma anchorata and Verongula rigida. Five bacterial strains: Bacillus cereus (CIP 78.3), Escherichia coli (CIP 54.127), Pseudomonas aeruginosa (CIP A22), Staphylococcus aureus (CIP 67.8) and Staphylococcus saprophyticus (CIP 76125) were evaluated, as well as four tumor cell lines: breast cancer (MDA-MB231), glioblastoma (RES259) and leukemia (MOLM14 and HL-60). Antimicrobial activity was evaluated using the disc diffusion technique by determining the minimum inhibitory and minimum bactericidal concentrations. Tumor cytotoxic activity was determined in vitro by defining the minimum concentration of extracts that would inhibit cell growth. Ethanolic extracts of Agelas clathrodes were bactericidal for Staphylococcus aureus and Staphylococcus saprophyticus strains, as well as strongly cytotoxic (IC50 < 20 µg/mL) on all cancer cell lines. Verongula rigida also showed strong cytotoxic activity on cell lines but no antimicrobial activity. These results are innovative for this species on these bacterial lines, highlighting the potential of sponge extracts from this area as bioactive compounds sources.