Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 6(12): e1001038, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21187899

RESUMO

The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code.


Assuntos
Região CA1 Hipocampal/citologia , Biologia Computacional/métodos , Modelos Neurológicos , Células Piramidais/fisiologia , Algoritmos , Animais , Análise por Conglomerados , Reprodutibilidade dos Testes , Sinapses/fisiologia , Fatores de Tempo
2.
EMBO Rep ; 7(9): 886-92, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16953202

RESUMO

For many decades, neurons were considered to be the elementary computational units of the brain and were assumed to summate incoming signals and elicit action potentials only in response to suprathreshold stimuli. Although modelling studies predicted that single neurons constitute a much more powerful computational entity, able to perform an array of nonlinear calculations, this possibility was not explored experimentally until the discovery of active mechanisms in the dendrites of most neuron types. Here, we review several modelling studies that have addressed information processing in single neurons, starting with those characterizing the arithmetic of different dendritic components, to those tackling neuronal integration at the cell body and, finally, those analysing the computational abilities of the axon. We present modelling predictions along with supporting experimental data in an effort to highlight the significant contribution of modelling work to enhancing our understanding of single-neuron arithmetic.


Assuntos
Dendritos/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Dinâmica não Linear , Sinapses/fisiologia , Animais , Axônios/química , Simulação por Computador , Dendritos/química , Drosophila , Previsões , Camundongos , Neurônios/química , Neurônios/metabolismo , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA