Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 632(8025): 614-621, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048821

RESUMO

Western equine encephalitis virus (WEEV) is an arthropod-borne virus (arbovirus) that frequently caused major outbreaks of encephalitis in humans and horses in the early twentieth century, but the frequency of outbreaks has since decreased markedly, and strains of this alphavirus isolated in the past two decades are less virulent in mammals than strains isolated in the 1930s and 1940s1-3. The basis for this phenotypic change in WEEV strains and coincident decrease in epizootic activity (known as viral submergence3) is unclear, as is the possibility of re-emergence of highly virulent strains. Here we identify protocadherin 10 (PCDH10) as a cellular receptor for WEEV. We show that multiple highly virulent ancestral WEEV strains isolated in the 1930s and 1940s, in addition to binding human PCDH10, could also bind very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), which are recognized by another encephalitic alphavirus as receptors4. However, whereas most of the WEEV strains that we examined bind to PCDH10, a contemporary strain has lost the ability to recognize mammalian PCDH10 while retaining the ability to bind avian receptors, suggesting WEEV adaptation to a main reservoir host during enzootic circulation. PCDH10 supports WEEV E2-E1 glycoprotein-mediated infection of primary mouse cortical neurons, and administration of a soluble form of PCDH10 protects mice from lethal WEEV challenge. Our results have implications for the development of medical countermeasures and for risk assessment for re-emerging WEEV strains.


Assuntos
Vírus da Encefalite Equina do Oeste , Especificidade de Hospedeiro , Protocaderinas , Receptores Virais , Animais , Feminino , Humanos , Masculino , Camundongos , Aves/metabolismo , Aves/virologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Vírus da Encefalite Equina do Oeste/classificação , Vírus da Encefalite Equina do Oeste/metabolismo , Vírus da Encefalite Equina do Oeste/patogenicidade , Encefalomielite Equina/epidemiologia , Encefalomielite Equina/virologia , Proteínas Relacionadas a Receptor de LDL/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Fenótipo , Protocaderinas/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Zoonoses Virais/epidemiologia , Zoonoses Virais/virologia
2.
J Virol ; 97(11): e0090623, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37843369

RESUMO

IMPORTANCE: It is well known that influenza A viruses (IAV) initiate host cell infection by binding to sialic acid, a sugar molecule present at the ends of various sugar chains called glycoconjugates. These sugar chains can vary in chain length, structure, and composition. However, it remains unknown if IAV strains preferentially bind to sialic acid on specific glycoconjugate type(s) for host cell infection. Here, we utilized CRISPR gene editing to abolish sialic acid on different glycoconjugate types in human lung cells, and evaluated human versus avian IAV infections. Our studies show that both human and avian IAV strains can infect human lung cells by utilizing any of the three major sialic acid-containing glycoconjugate types, specifically N-glycans, O-glycans, and glycolipids. Interestingly, simultaneous elimination of sialic acid on all three major glycoconjugate types in human lung cells dramatically decreased human IAV infection, yet had little effect on avian IAV infection. These studies show that avian IAV strains effectively utilize other less prevalent glycoconjugates for infection, whereas human IAV strains rely on a limited repertoire of glycoconjugate types. The remarkable ability of avian IAV strains to utilize diverse glycoconjugate types may allow for easy transmission into new host species.


Assuntos
Vírus da Influenza A , Influenza Humana , Pulmão , Receptores de Superfície Celular , Animais , Humanos , Proteínas de Transporte/metabolismo , Glicoconjugados/metabolismo , Vírus da Influenza A/metabolismo , Pulmão/virologia , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Açúcares/metabolismo , Influenza Aviária/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo
3.
PLoS Pathog ; 17(5): e1009517, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33970958

RESUMO

It is well documented that influenza A viruses selectively package 8 distinct viral ribonucleoprotein complexes (vRNPs) into each virion; however, the role of host factors in genome assembly is not completely understood. To evaluate the significance of cellular factors in genome assembly, we generated a reporter virus carrying a tetracysteine tag in the NP gene (NP-Tc virus) and assessed the dynamics of vRNP localization with cellular components by fluorescence microscopy. At early time points, vRNP complexes were preferentially exported to the MTOC; subsequently, vRNPs associated on vesicles positive for cellular factor Rab11a and formed distinct vRNP bundles that trafficked to the plasma membrane on microtubule networks. In Rab11a deficient cells, however, vRNP bundles were smaller in the cytoplasm with less co-localization between different vRNP segments. Furthermore, Rab11a deficiency increased the production of non-infectious particles with higher RNA copy number to PFU ratios, indicative of defects in specific genome assembly. These results indicate that Rab11a+ vesicles serve as hubs for the congregation of vRNP complexes and enable specific genome assembly through vRNP:vRNP interactions, revealing the importance of Rab11a as a critical host factor for influenza A virus genome assembly.


Assuntos
Genoma Viral , Vírus da Influenza A/genética , Influenza Humana/virologia , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Proteínas rab de Ligação ao GTP/metabolismo , Células A549 , Células HEK293 , Humanos , Vírus da Influenza A/isolamento & purificação , Influenza Humana/genética , Ribonucleoproteínas/genética , Proteínas Virais/genética , Replicação Viral , Proteínas rab de Ligação ao GTP/genética
4.
Res Sq ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39149495

RESUMO

RNA molecules perform a diversity of essential functions for which their linear sequences must fold into higher-order structures. Techniques including crystallography and cryogenic electron microscopy have revealed 3D structures of ribosomal, transfer, and other well-structured RNAs; while chemical probing with sequencing facilitates secondary structure modeling of any RNAs of interest, even within cells. Ongoing efforts continue increasing the accuracy, resolution, and ability to distinguish coexisting alternative structures. However, no method can discover and quantify alternative structures with base pairs spanning arbitrarily long distances - an obstacle for studying viral, messenger, and long noncoding RNAs, which may form long-range base pairs. Here, we introduce the method of Structure Ensemble Ablation by Reverse Complement Hybridization with Mutational Profiling (SEARCH-MaP) and software for Structure Ensemble Inference by Sequencing, Mutation Identification, and Clustering of RNA (SEISMIC-RNA). We use SEARCH-MaP and SEISMIC-RNA to discover that the frameshift stimulating element of SARS coronavirus 2 base-pairs with another element 1 kilobase downstream in nearly half of RNA molecules, and that this structure competes with a pseudoknot that stimulates ribosomal frameshifting. Moreover, we identify long-range base pairs involving the frameshift stimulating element in other coronaviruses including SARS coronavirus 1 and transmissible gastroenteritis virus, and model the full genomic secondary structure of the latter. These findings suggest that long-range base pairs are common in coronaviruses and may regulate ribosomal frameshifting, which is essential for viral RNA synthesis. We anticipate that SEARCH-MaP will enable solving many RNA structure ensembles that have eluded characterization, thereby enhancing our general understanding of RNA structures and their functions. SEISMIC-RNA, software for analyzing mutational profiling data at any scale, could power future studies on RNA structure and is available on GitHub and the Python Package Index.

5.
bioRxiv ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38746332

RESUMO

RNA molecules perform a diversity of essential functions for which their linear sequences must fold into higher-order structures. Techniques including crystallography and cryogenic electron microscopy have revealed 3D structures of ribosomal, transfer, and other well-structured RNAs; while chemical probing with sequencing facilitates secondary structure modeling of any RNAs of interest, even within cells. Ongoing efforts continue increasing the accuracy, resolution, and ability to distinguish coexisting alternative structures. However, no method can discover and quantify alternative structures with base pairs spanning arbitrarily long distances - an obstacle for studying viral, messenger, and long noncoding RNAs, which may form long-range base pairs. Here, we introduce the method of Structure Ensemble Ablation by Reverse Complement Hybridization with Mutational Profiling (SEARCH-MaP) and software for Structure Ensemble Inference by Sequencing, Mutation Identification, and Clustering of RNA (SEISMIC-RNA). We use SEARCH-MaP and SEISMIC-RNA to discover that the frameshift stimulating element of SARS coronavirus 2 base-pairs with another element 1 kilobase downstream in nearly half of RNA molecules, and that this structure competes with a pseudoknot that stimulates ribosomal frameshifting. Moreover, we identify long-range base pairs involving the frameshift stimulating element in other coronaviruses including SARS coronavirus 1 and transmissible gastroenteritis virus, and model the full genomic secondary structure of the latter. These findings suggest that long-range base pairs are common in coronaviruses and may regulate ribosomal frameshifting, which is essential for viral RNA synthesis. We anticipate that SEARCH-MaP will enable solving many RNA structure ensembles that have eluded characterization, thereby enhancing our general understanding of RNA structures and their functions. SEISMIC-RNA, software for analyzing mutational profiling data at any scale, could power future studies on RNA structure and is available on GitHub and the Python Package Index.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA