Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(11): 1447-1461, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37144446

RESUMO

BACKGROUND: Thrombosis is one of the main complications in cancer patients often leading to mortality. However, the mechanisms underlying platelet hyperactivation are poorly understood. METHODS: Murine and human platelets were isolated and treated with small extracellular vesicles (sEVs) from various cancer cell lines. The effects of these cancer-sEVs on platelets were evaluated both in vitro and in vivo using various approaches, including the detection of cancer-sEV-specific markers in murine platelets and patient samples, measurement of platelet activation and thrombosis assays. Signaling events induced by cancer-sEVs and leading to platelet activation were identified, and the use of blocking antibodies to prevent thrombosis was demonstrated. RESULTS: We demonstrate that platelets very effectively take up sEVs from aggressive cancer cells. The process of uptake is fast, proceeds effectively in circulation in mice, and is mediated by the abundant sEV membrane protein-CD63. The uptake of cancer-sEVs leads to the accumulation of cancer cell-specific RNA in platelets in vitro and in vivo. The human prostate cancer-sEV-specific RNA marker PCA3 is detected in platelets of ~70% of prostate cancer patients. This was markedly reduced after prostatectomy. In vitro studies showed that platelet uptake of cancer-sEVs induces strong platelet activation in a CD63-RPTPα (receptor-like protein tyrosine phosphatase alpha)-dependent manner. In contrast to physiological agonists ADP and thrombin, cancer-sEVs activate platelets via a noncanonical mechanism. Intravital studies demonstrated accelerated thrombosis both in murine tumor models and in mice that received intravenous injections of cancer-sEVs. The prothrombotic effects of cancer-sEVs were rescued by blocking CD63. CONCLUSIONS: Tumors communicate with platelets by means of sEVs, which deliver cancer markers and activate platelets in a CD63-dependent manner leading to thrombosis. This emphasizes the diagnostic and prognostic value of platelet-associated cancer markers and identifies new pathways for intervention.


Assuntos
Vesículas Extracelulares , Neoplasias da Próstata , Trombose , Masculino , Humanos , Animais , Camundongos , Plaquetas/metabolismo , Ativação Plaquetária , Trombose/metabolismo , Transdução de Sinais , Neoplasias da Próstata/metabolismo , Vesículas Extracelulares/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 44(1): 238-253, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031841

RESUMO

BACKGROUND: Biological sex differences play a vital role in cardiovascular diseases, including atherosclerosis. The endothelium is a critical contributor to cardiovascular pathologies since endothelial cells (ECs) regulate vascular tone, redox balance, and inflammatory reactions. Although EC activation and dysfunction play an essential role in the early and late stages of atherosclerosis development, little is known about sex-dependent differences in EC. METHODS: We used human and mouse aortic EC as well as EC-lineage tracing (Cdh5-CreERT2 Rosa-YFP [yellow fluorescence protein]) atherosclerotic Apoe-/- mice to investigate the biological sexual dimorphism of the EC functions in vitro and in vivo. Bioinformatics analyses were performed on male and female mouse aortic EC and human lung and aortic EC. RESULTS: In vitro, female human and mouse aortic ECs showed more apoptosis and higher cellular reactive oxygen species levels than male EC. In addition, female mouse aortic EC had lower mitochondrial membrane potential (ΔΨm), lower TFAM (mitochondrial transcription factor A) levels, and decreased angiogenic potential (tube formation, cell viability, and proliferation) compared with male mouse aortic EC. In vivo, female mice had significantly higher lipid accumulation within the aortas, impaired glucose tolerance, and lower endothelial-mediated vasorelaxation than males. Using the EC-lineage tracing approach, we found that female lesions had significantly lower rates of intraplaque neovascularization and endothelial-to-mesenchymal transition within advanced atherosclerotic lesions but higher incidents of missing EC lumen coverage and higher levels of oxidative products and apoptosis. RNA-seq analyses revealed that both mouse and human female EC had higher expression of genes associated with inflammation and apoptosis and lower expression of genes related to angiogenesis and oxidative phosphorylation than male EC. CONCLUSIONS: Our study delineates critical sex-specific differences in EC relevant to proinflammatory, pro-oxidant, and angiogenic characteristics, which are entirely consistent with a vulnerable phenotype in females. Our results provide a biological basis for sex-specific proatherosclerotic mechanisms.


Assuntos
Doenças da Aorta , Aterosclerose , Feminino , Masculino , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Doenças da Aorta/patologia , Aterosclerose/patologia , Aorta/patologia , Células Cultivadas , Espécies Reativas de Oxigênio/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
3.
J Biol Chem ; 299(12): 105425, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926285

RESUMO

Akt3 is one of the three members of the serine/threonine protein kinase B (AKT) family, which regulates multiple cellular processes. We have previously demonstrated that global knockout of Akt3 in mice promotes atherogenesis in a macrophage-dependent manner. Whether enhanced Akt3 kinase activity affects atherogenesis is not known. In this study, we crossed atherosclerosis-prone ApoE-/- mice with a mouse strain that has enhanced Akt3 kinase activity (Akt3nmf350) and assessed atherosclerotic lesion formation and the role of macrophages in atherogenesis. Significant reduction in atherosclerotic lesion area and macrophage accumulation in lesions were observed in ApoE-/-/Akt3nmf350 mice fed a Western-type diet. Experiments using chimeric ApoE-/- mice with either ApoE-/-/Akt3nmf350 bone marrow or ApoE-/- bone marrow cells showed that enhanced Akt3 activity specifically in bone marrow-derived cells is atheroprotective. The atheroprotective effect of Akt3nmf350 was more pronounced in male mice. In line with this result, the release of the pro-inflammatory cytokines IL-6, MCP1, TNF-α, and MIP-1α was reduced by macrophages from male but not female ApoE-/-/Akt3nmf350 mice. Levels of IL-6 and TNF-α were also reduced in atherosclerotic lesions of ApoE-/-/Akt3nmf350 male mice compared to ApoE-/- mice. Macrophages from male ApoE-/-/Akt3nmf350 mice were also more resistant to apoptosis in vitro and in vivo and tended to have more pronounced M2 polarization in vitro. These findings demonstrated that enhanced Akt3 kinase activity in macrophages protects mice from atherosclerosis in hyperlipidemic mice in a gender-dependent manner.


Assuntos
Aterosclerose , Hiperlipidemias , Animais , Masculino , Camundongos , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Hiperlipidemias/complicações , Hiperlipidemias/genética , Interleucina-6 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa
4.
J Immunol ; 204(7): 1954-1967, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32094207

RESUMO

Major myeloid cell functions from adhesion to migration and phagocytosis are mediated by integrin adhesion complexes, also known as adhesome. The presence of a direct integrin binding partner Kindlin-3 is crucial for these functions, and its lack causes severe immunodeficiency in humans. However, how Kindlin-3 is incorporated into the adhesome and how its function is regulated is poorly understood. In this study, using nuclear magnetic resonance spectroscopy, we show that Kindlin-3 directly interacts with paxillin (PXN) and leupaxin (LPXN) via G43/L47 within its F0 domain. Surprisingly, disruption of Kindlin-3-PXN/LPXN interactions in Raw 264.7 macrophages promoted cell spreading and polarization, resulting in upregulation of both general cell motility and directed cell migration, which is in a drastic contrast to the consequences of Kindlin-3 knockout. Moreover, disruption of Kindlin-3-PXN/LPXN binding promoted the transition from mesenchymal to amoeboid mode of movement as well as augmented phagocytosis. Thus, these novel links between Kindlin-3 and key adhesome members PXN/LPXN limit myeloid cell motility and phagocytosis, thereby providing an important immune regulatory mechanism.


Assuntos
Movimento Celular/fisiologia , Citoesqueleto/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Fagocitose/fisiologia , Animais , Sítios de Ligação/fisiologia , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Paxilina/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica/fisiologia , Células RAW 264.7
5.
J Biol Chem ; 295(7): 1973-1984, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31907281

RESUMO

Apolipoprotein A-I (apoA-I) is cross-linked and dysfunctional in human atheroma. Although multiple mechanisms of apoA-I cross-linking have been demonstrated in vitro, the in vivo mechanisms of cross-linking are not well-established. We have recently demonstrated the highly selective and efficient modification of high-density lipoprotein (HDL) apoproteins by endogenous oxidized phospholipids (oxPLs), including γ-ketoalkenal phospholipids. In the current study, we report that γ-ketoalkenal phospholipids effectively cross-link apoproteins in HDL. We further demonstrate that cross-linking impairs the cholesterol efflux mediated by apoA-I or HDL3 in vitro and in vivo Using LC-MS/MS analysis, we analyzed the pattern of apoprotein cross-linking in isolated human HDL either by synthetic γ-ketoalkenal phospholipids or by oxPLs generated during HDL oxidation in plasma by the physiologically relevant MPO-H2O2-NO2- system. We found that five histidine residues in helices 5-8 of apoA-I are preferably cross-linked by oxPLs, forming stable pyrrole adducts with lysine residues in the helices 3-4 of another apoA-I or in the central domain of apoA-II. We also identified cross-links of apoA-I and apoA-II with two minor HDL apoproteins, apoA-IV and apoE. We detected a similar pattern of apoprotein cross-linking in oxidized murine HDL. We further detected oxPL cross-link adducts of HDL apoproteins in plasma and aorta of hyperlipidemic LDLR-/- mice, including cross-link adducts of apoA-I His-165-apoA-I Lys-93, apoA-I His-154-apoA-I Lys-105, apoA-I His-154-apoA-IV Lys-149, and apoA-II Lys-30-apoE His-227. These findings suggest an important mechanism that contributes to the loss of HDL's atheroprotective function in vivo.


Assuntos
Apolipoproteína A-I/genética , Lipoproteínas HDL3/genética , Fosfolipídeos/genética , Receptores de LDL/genética , Animais , Aorta/metabolismo , Cromatografia Líquida , Humanos , Peróxido de Hidrogênio/metabolismo , Lipoproteínas HDL/genética , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Oxirredução , Fosforilação Oxidativa , Fosfolipídeos/metabolismo , Espectrometria de Massas em Tandem
6.
J Biol Chem ; 294(39): 14370-14382, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31395659

RESUMO

A critical step in the development of chronic inflammatory diseases is the accumulation of proinflammatory macrophages in the extracellular matrix (ECM) of peripheral tissues. The adhesion receptor integrin αDß2 promotes the development of atherosclerosis and diabetes by supporting macrophage retention in inflamed tissue. We recently found that the end product of docosahexaenoic acid (DHA) oxidation, 2-(ω-carboxyethyl)pyrrole (CEP), serves as a ligand for αDß2 CEP adduct with ECM is generated during inflammation-mediated lipid peroxidation. The goal of this project was to identify a specific inhibitor for αDß2-CEP interaction that can prevent macrophage accumulation. Using a specially designed peptide library, Biacore-detected protein-protein interaction, and adhesion of integrin-transfected HEK 293 cells, we identified a sequence (called P5 peptide) that significantly and specifically inhibited αD-CEP binding. In the model of thioglycollate-induced peritoneal inflammation, the injection of cyclic P5 peptide reduced 3-fold the macrophage accumulation in WT mice but had no effect in αD-deficient mice. The tracking of adoptively transferred, fluorescently labeled WT and αD-/- monocytes in the model of peritoneal inflammation and in vitro two-dimensional and three-dimensional migration assays demonstrated that P5 peptide does not affect monocyte transendothelial migration or macrophage efflux from the peritoneal cavity but regulates macrophage migration through the ECM. Moreover, the injection of P5 peptide into WT mice on a high-fat diet prevents macrophage accumulation in adipose tissue in an αDß2-dependent manner. Taken together, these results demonstrate the importance of αDß2-mediated macrophage adhesion for the accumulation of infiltrating macrophages in the inflamed ECM and propose P5 peptide as a potential inhibitor of atherogenesis and diabetes.


Assuntos
Anti-Inflamatórios/farmacologia , Movimento Celular , Macrófagos Peritoneais/metabolismo , Peptídeos Cíclicos/farmacologia , Peritonite/tratamento farmacológico , Pirróis/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Células HEK293 , Humanos , Cadeias alfa de Integrinas/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos Cíclicos/uso terapêutico , Peritonite/etiologia , Ligação Proteica , Tioglicolatos/toxicidade
7.
Blood ; 132(1): 78-88, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29724896

RESUMO

Early stages of inflammation are characterized by extensive oxidative insult by recruited and activated neutrophils. Secretion of peroxidases, including the main enzyme, myeloperoxidase, leads to the generation of reactive oxygen species. We show that this oxidative insult leads to polyunsaturated fatty acid (eg, docosahexaenoate), oxidation, and accumulation of its product 2-(ω-carboxyethyl)pyrrole (CEP), which, in turn, is capable of protein modifications. In vivo CEP is generated predominantly at the inflammatory sites in macrophage-rich areas. During thioglycollate-induced inflammation, neutralization of CEP adducts dramatically reduced macrophage accumulation in the inflamed peritoneal cavity while exhibiting no effect on the early recruitment of neutrophils, suggesting a role in the second wave of inflammation. CEP modifications were abundantly deposited along the path of neutrophils migrating through the 3-dimensional fibrin matrix in vitro. Neutrophil-mediated CEP formation was markedly inhibited by the myeloperoxidase inhibitor, 4-ABH, and significantly reduced in myeloperoxidase-deficient mice. On macrophages, CEP adducts were recognized by cell adhesion receptors, integrin αMß2 and αDß2 Macrophage migration through CEP-fibrin gel was dramatically augmented when compared with fibrin alone, and was reduced by ß2-integrin deficiency. Thus, neutrophil-mediated oxidation of abundant polyunsaturated fatty acids leads to the transformation of existing proteins into stronger adhesive ligands for αMß2- and αDß2-dependent macrophage migration. The presence of a carboxyl group rather than a pyrrole moiety on these adducts, resembling characteristics of bacterial and/or immobilized ligands, is critical for recognition by macrophages. Therefore, specific oxidation-dependent modification of extracellular matrix, aided by neutrophils, promotes subsequent αMß2- and αDß2-mediated migration/retention of macrophages during inflammation.


Assuntos
Antígenos CD11/metabolismo , Antígenos CD18/metabolismo , Movimento Celular , Matriz Extracelular/metabolismo , Cadeias alfa de Integrinas/metabolismo , Antígeno de Macrófago 1/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Animais , Antígenos CD11/genética , Antígenos CD18/genética , Matriz Extracelular/genética , Matriz Extracelular/patologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Cadeias alfa de Integrinas/genética , Antígeno de Macrófago 1/genética , Macrófagos/patologia , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Camundongos , Camundongos Knockout , Neutrófilos/patologia , Oxirredução
8.
Circ Res ; 121(8): 951-962, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28775078

RESUMO

RATIONALE: Platelet hyperreactivity, which is common in many pathological conditions, is associated with increased atherothrombotic risk. The mechanisms leading to platelet hyperreactivity are complex and not yet fully understood. OBJECTIVE: Platelet hyperreactivity and accelerated thrombosis, specifically in dyslipidemia, have been mechanistically linked to the accumulation in the circulation of a specific group of oxidized phospholipids (oxPCCD36) that are ligands for the platelet pattern recognition receptor CD36. In the current article, we tested whether the platelet innate immune system contributes to responses to oxPCCD36 and accelerated thrombosis observed in hyperlipidemia. METHODS AND RESULTS: Using in vitro approaches, as well as platelets from mice with genetic deletion of MyD88 (myeloid differentiation factor 88) or TLRs (Toll-like receptors), we demonstrate that TLR2 and TLR6 are required for the activation of human and murine platelets by oxPCCD36. oxPCCD36 induce formation of CD36/TLR2/TLR6 complex in platelets and activate downstream signaling via TIRAP (Toll-interleukin 1 receptor domain containing adaptor protein)-MyD88-IRAK (interleukin-1 receptor-associated kinase)1/4-TRAF6 (TNF receptor-associated factor 6), leading to integrin activation via the SFK (Src family kinase)-Syk (spleen tyrosine kinase)-PLCγ2 (phospholipase Cγ2) pathway. Intravital thrombosis studies using ApoE-/- mice with genetic deficiency of TLR2 or TLR6 have demonstrated that oxPCCD36 contribute to accelerated thrombosis specifically in the setting of hyperlipidemia. CONCLUSIONS: Our studies reveal that TLR2 plays a key role in platelet hyperreactivity and the prothrombotic state in the setting of hyperlipidemia by sensing a wide range of endogenous lipid peroxidation ligands and activating innate immune signaling cascade in platelets.


Assuntos
Plaquetas/metabolismo , Hiperlipidemias/metabolismo , Ativação Plaquetária , Trombose/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Plaquetas/imunologia , Antígenos CD36/deficiência , Antígenos CD36/genética , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/genética , Hiperlipidemias/imunologia , Imunidade Inata , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Oxirredução , Fenótipo , Fosfolipídeos/sangue , Transdução de Sinais , Trombose/sangue , Trombose/genética , Trombose/imunologia , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 6 Toll-Like/deficiência , Receptor 6 Toll-Like/genética , Receptor 6 Toll-Like/metabolismo , Transfecção
9.
J Biol Chem ; 292(22): 9283-9293, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28389565

RESUMO

Fluid-phase pinocytosis of LDL by macrophages is regarded as a novel promising target to reduce macrophage cholesterol accumulation in atherosclerotic lesions. The mechanisms of regulation of fluid-phase pinocytosis in macrophages and, specifically, the role of Akt kinases are poorly understood. We have found previously that increased lipoprotein uptake via the receptor-independent process in Akt3 kinase-deficient macrophages contributes to increased atherosclerosis in Akt3-/- mice. The mechanism by which Akt3 deficiency promotes lipoprotein uptake in macrophages is unknown. We now report that Akt3 constitutively suppresses macropinocytosis in macrophages through a novel WNK1/SGK1/Cdc42 pathway. Mechanistic studies have demonstrated that the lack of Akt3 expression in murine and human macrophages results in increased expression of with-no-lysine kinase 1 (WNK1), which, in turn, leads to increased activity of serum and glucocorticoid-inducible kinase 1 (SGK1). SGK1 promotes expression of the Rho family GTPase Cdc42, a positive regulator of actin assembly, cell polarization, and pinocytosis. Individual suppression of WNK1 expression, SGK1, or Cdc42 activity in Akt3-deficient macrophages rescued the phenotype. These results demonstrate that Akt3 is a specific negative regulator of macropinocytosis in macrophages.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Pinocitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Humanos , Proteínas Imediatamente Precoces/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipoproteínas LDL/genética , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteína Quinase 1 Deficiente de Lisina WNK , Proteína cdc42 de Ligação ao GTP/genética
10.
Blood ; 127(10): 1221-2, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26965920

RESUMO

The importance of research focused on the final events of atherothrombosis cannot be overestimated. Platelet hyperreactivity leading to thrombosis is the main reason for mortality and morbidity in patients with cardiovascular disease and stroke, which together remain a leading cause of death in developed countries. In this issue of Blood, Shen et al1 establish another functional link between proatherogenic lipoproteins and platelet-mediated thrombus formation with a specific focus on stroke. In their model, the initiating component is L5, the electronegative subfraction of low-density lipoproteins (LDLs), which was shown to be substantially elevated in patients with ischemic stroke. L5 was shown to activate platelets via its receptor, lectin-like oxidized LDL receptor-1 (LOX-1), and αß amyloid peptide, which together contribute to platelet hyperreactivity and stroke complications.


Assuntos
Isquemia Encefálica/sangue , Lipoproteínas LDL/sangue , Agregação Plaquetária , Acidente Vascular Cerebral/sangue , Animais , Feminino , Humanos , Masculino
11.
Blood ; 127(21): 2618-29, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27015965

RESUMO

A prothrombotic state and increased platelet reactivity are common in dyslipidemia and oxidative stress. Lipid peroxidation, a major consequence of oxidative stress, generates highly reactive products, including hydroxy-ω-oxoalkenoic acids that modify autologous proteins generating biologically active derivatives. Phosphatidylethanolamine, the second most abundant eukaryotic phospholipid, can also be modified by hydroxy-ω-oxoalkenoic acids. However, the conditions leading to accumulation of such derivatives in circulation and their biological activities remain poorly understood. We now show that carboxyalkylpyrrole-phosphatidylethanolamine derivatives (CAP-PEs) are present in the plasma of hyperlipidemic ApoE(-/-) mice. CAP-PEs directly bind to TLR2 and induces platelet integrin αIIbß3 activation and P-selectin expression in a Toll-like receptor 2 (TLR2)-dependent manner. Platelet activation by CAP-PEs includes assembly of TLR2/TLR1 receptor complex, induction of downstream signaling via MyD88/TIRAP, phosphorylation of IRAK4, and subsequent activation of tumor necrosis factor receptor-associated factor 6. This in turn activates the Src family kinases, spleen tyrosine kinase and PLCγ2, and platelet integrins. Murine intravital thrombosis studies demonstrated that CAP-PEs accelerate thrombosis in TLR2-dependent manner and that TLR2 contributes to accelerate thrombosis in mice in the settings of hyperlipidemia. Our study identified the novel end-products of lipid peroxidation, accumulating in circulation in hyperlipidemia and inducing platelet activation by promoting cross-talk between innate immunity and integrin activation signaling pathways.


Assuntos
Apolipoproteínas E/deficiência , Plaquetas/metabolismo , Hiperlipidemias/metabolismo , Fosfatidiletanolaminas/metabolismo , Ativação Plaquetária , Trombose/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Hiperlipidemias/genética , Hiperlipidemias/patologia , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fosfatidiletanolaminas/genética , Fosforilação/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Trombose/genética , Trombose/patologia , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética
12.
Circ Res ; 117(4): 321-32, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25966710

RESUMO

RATIONALE: Oxidative stress is an important contributing factor in several human pathologies ranging from atherosclerosis to cancer progression; however, the mechanisms underlying tissue protection from oxidation products are poorly understood. Oxidation of membrane phospholipids, containing the polyunsaturated fatty acid docosahexaenoic acid, results in the accumulation of an end product, 2-(ω-carboxyethyl)pyrrole (CEP), which was shown to have proangiogenic and proinflammatory functions. Although CEP is continuously accumulated during chronic processes, such as tumor progression and atherosclerosis, its level during wound healing return to normal when the wound is healed, suggesting the existence of a specific clearance mechanism. OBJECTIVE: To identify the cellular and molecular mechanism for CEP clearance. METHODS AND RESULTS: Here, we show that macrophages are able to bind, scavenge, and metabolize carboxyethylpyrrole derivatives of proteins but not structurally similar ethylpyrrole derivatives, demonstrating the high specificity of the process. F4/80(hi) and M2-skewed macrophages are much more efficient at CEP binding and scavenging compared with F4/80(lo) and M1-skewed macrophages. Depletion of macrophages leads to increased CEP accumulation in vivo. CEP binding and clearance are dependent on 2 receptors expressed by macrophages, CD36 and toll-like receptor 2. Although knockout of each individual receptor results in diminished CEP clearance, the lack of both receptors almost completely abrogates macrophages' ability to scavenge CEP derivatives of proteins. CONCLUSIONS: Our study demonstrates the mechanisms of recognition, scavenging, and clearance of pathophysiologically active products of lipid oxidation in vivo, thereby contributing to tissue protection against products of oxidative stress.


Assuntos
Antígenos CD36/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos Peritoneais/metabolismo , Estresse Oxidativo , Pirróis/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Antígenos CD36/deficiência , Antígenos CD36/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Macrófagos Peritoneais/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Fenótipo , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Transfecção , Carga Tumoral , Cicatrização
13.
Thromb J ; 15: 22, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28860945

RESUMO

BACKGROUND: It is well accepted that functional activity of platelet integrin αIIbß3 is crucial for hemostasis and thrombosis. The ß3 subunit of the complex undergoes tyrosine phosphorylation shown to be critical for outside-in integrin signaling and platelet clot retraction ex vivo. However, the role of this important signaling event in other aspects of prothrombotic platelet function is unknown. METHOD: Here, we assess the role of ß3 tyrosine phosphorylation in platelet function regulation with a knock-in mouse strain, where two ß3 cytoplasmic tyrosines are mutated to phenylalanine (DiYF). We employed platelet transfusion technique and intravital microscopy for observing the cellular events involved in specific steps of thrombus growth to investigate in detail the role of ß3 tyrosine phosphorylation in arterial thrombosis in vivo. RESULTS: Upon injury, DiYF mice exhibited delayed arterial occlusion and unstable thrombus formation. The mean thrombus volume in DiYF mice formed on collagen was only 50% of that in WT. This effect was attributed to DiYF platelets but not to other blood cells and endothelium, which also carry these mutations. Transfusion of isolated DiYF but not WT platelets into irradiated WT mice resulted in reversal of the thrombotic phenotype and significantly prolonged blood vessel occlusion times. DiYF platelets exhibited reduced adhesion to collagen under in vitro shear conditions compared to WT platelets. Decreased platelet microparticle release after activation, both in vitro and in vivo, were observed in DiYF mice compared to WT mice. CONCLUSION: ß3 tyrosine phosphorylation of platelet αIIbß3 regulates both platelet pro-thrombotic activity and the formation of a stable platelet thrombus, as well as arterial microparticle release.

15.
Nature ; 467(7318): 972-6, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20927103

RESUMO

Reciprocity of inflammation, oxidative stress and neovascularization is emerging as an important mechanism underlying numerous processes from tissue healing and remodelling to cancer progression. Whereas the mechanism of hypoxia-driven angiogenesis is well understood, the link between inflammation-induced oxidation and de novo blood vessel growth remains obscure. Here we show that the end products of lipid oxidation, ω-(2-carboxyethyl)pyrrole (CEP) and other related pyrroles, are generated during inflammation and wound healing and accumulate at high levels in ageing tissues in mice and in highly vascularized tumours in both murine and human melanoma. The molecular patterns of carboxyalkylpyrroles are recognized by Toll-like receptor 2 (TLR2), but not TLR4 or scavenger receptors on endothelial cells, leading to an angiogenic response that is independent of vascular endothelial growth factor. CEP promoted angiogenesis in hindlimb ischaemia and wound healing models through MyD88-dependent TLR2 signalling. Neutralization of endogenous carboxyalkylpyrroles impaired wound healing and tissue revascularization and diminished tumour angiogenesis. Both TLR2 and MyD88 are required for CEP-induced stimulation of Rac1 and endothelial migration. Taken together, these findings establish a new function of TLR2 as a sensor of oxidation-associated molecular patterns, providing a key link connecting inflammation, oxidative stress, innate immunity and angiogenesis.


Assuntos
Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Estresse Oxidativo/fisiologia , Pirróis/metabolismo , Receptor 2 Toll-Like/metabolismo , Envelhecimento/metabolismo , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Linhagem Celular , Movimento Celular , Células Endoteliais/metabolismo , Membro Posterior/metabolismo , Humanos , Imunidade Inata/imunologia , Inflamação/metabolismo , Isquemia/metabolismo , Ligantes , Melanoma/irrigação sanguínea , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Oxirredução , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Propionatos , Pirróis/química , Pirróis/farmacologia , Receptores Depuradores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/agonistas , Receptor 4 Toll-Like/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo
16.
Blood ; 122(14): 2491-9, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23896409

RESUMO

Kindlin-2, a widely distributed cytoskeletal protein, has been implicated in integrin activation, and its absence is embryonically lethal in mice. In the present study, we tested whether hemostasis might be perturbed in kindlin-2(+/-) mice. Bleeding time and carotid artery occlusion time were significantly prolonged in kindlin-2(+/-) mice. Whereas plasma concentrations/activities of key coagulation/fibrinolytic proteins and platelet counts and aggregation were similar in wild-type and kindlin-2(+/-) mice, kindlin-2(+/-) endothelial cells (ECs) showed enhanced inhibition of platelet aggregation induced by adenosine 5'-diphosphate (ADP) or low concentrations of other agonists. Cell-surface expression of 2 enzymes involved in ADP/adenosine 5'-monophosphate (AMP) degradation, adenosine triphosphate (ATP) diphosphohydrolase (CD39) and ecto-5'-nucleotidase (CD73) were increased twofold to threefold on kindlin-2(+/-) ECs, leading to enhanced ATP/ADP catabolism and production of adenosine, an inhibitor of platelet aggregation. Trafficking of CD39 and CD73 at the EC surface was altered in kindlin-2(+/-) mice. Mechanistically, this was attributed to direct interaction of kindlin-2 with clathrin heavy chain, thereby controlling endocytosis and recycling of CD39 and CD73. The interaction of kindlin-2 with clathrin was independent of its integrin binding site but still dependent on a site within its F3 subdomain. Thus, kindlin-2 regulates trafficking of EC surface enzymes that control platelet responses and hemostasis.


Assuntos
Plaquetas/metabolismo , Clatrina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Hemostasia/fisiologia , Proteínas Musculares/metabolismo , 5'-Nucleotidase/biossíntese , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Antígenos CD/biossíntese , Apirase/biossíntese , Membrana Celular/metabolismo , Feminino , Citometria de Fluxo , Imunoprecipitação , Masculino , Camundongos , Camundongos Knockout , Agregação Plaquetária/fisiologia , Transporte Proteico/fisiologia , Ressonância de Plasmônio de Superfície
17.
Circ Res ; 112(1): 103-12, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23071157

RESUMO

RATIONALE: A prothrombotic state and increased platelet reactivity are common in pathophysiological conditions associated with oxidative stress and infections. Such conditions are associated with an appearance of altered-self ligands in circulation that can be recognized by Toll-like receptors (TLRs). Platelets express a number of TLRs, including TLR9; however, the role of TLR in platelet function and thrombosis is poorly understood. OBJECTIVE: To investigate the biological activities of carboxy(alkylpyrrole) protein adducts, an altered-self ligand generated in oxidative stress, on platelet function and thrombosis. METHODS AND RESULTS: In this study we show that carboxy(alkylpyrrole) protein adducts represent novel unconventional ligands for TLR9. Furthermore, using human and murine platelets, we demonstrate that carboxy(alkylpyrrole) protein adducts promote platelet activation, granule secretion, and aggregation in vitro and thrombosis in vivo via the TLR9/MyD88 pathway. Platelet activation by TLR9 ligands induces IRAK1 and AKT phosphorylation, and it is Src kinase-dependent. Physiological platelet agonists act synergistically with TLR9 ligands by inducing TLR9 expression on the platelet surface. CONCLUSIONS: Our study demonstrates that platelet TLR9 is a functional platelet receptor that links oxidative stress, innate immunity, and thrombosis.


Assuntos
Plaquetas/metabolismo , Ativação Plaquetária , Albumina Sérica/metabolismo , Trombose/sangue , Receptor Toll-Like 9/sangue , Animais , Plaquetas/imunologia , Antígenos CD36/deficiência , Antígenos CD36/genética , Linhagem Celular , Modelos Animais de Doenças , Genes Reporter , Humanos , Imunidade Inata , Quinases Associadas a Receptores de Interleucina-1/sangue , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Estresse Oxidativo , Fosfatidilinositol 3-Quinase/sangue , Fosforilação , Agregação Plaquetária , Proteínas Proto-Oncogênicas c-akt/sangue , Receptores Depuradores Classe B/deficiência , Receptores Depuradores Classe B/genética , Transdução de Sinais , Trombose/genética , Trombose/imunologia , Fatores de Tempo , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 6 Toll-Like/deficiência , Receptor 6 Toll-Like/genética , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Transfecção , Quinases da Família src/sangue
18.
Anal Chem ; 86(2): 1254-62, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24350680

RESUMO

Free radical-induced oxidation of phospholipids contributes significantly to pathologies associated with inflammation and oxidative stress. Detection of covalent interaction between oxidized phospholipids (oxPL) and proteins by LC-MS/MS could provide valuable information about the molecular mechanisms of oxPL effects. However, such studies are very limited because of significant challenges in detection of the comparatively low levels of oxPL-protein adducts in complex biological systems. Current approaches have several limitations, most important of which is the inability to detect protein modifications by naturally occurring oxPL. We now report, for the first time, an enrichment method that can be applied to the global analysis of protein adducts with various naturally occurring oxPL in relevant biological systems. This method exploits intrinsic properties of peptides modified by oxPL, allowing highly efficient enrichment of oxPL-modified peptides from biological samples. Very low levels of oxPL-protein adducts (<2 ppm) were detected using this enrichment method in combination with LC-MS/MS. We applied the method to several model systems, including oxidation of high density lipoprotein (HDL) and interaction of human platelets with a specific oxPL, and demonstrated its extremely high efficiency and productivity. We report multiple new modifications of apolipoproteins in HDL and proteins in human platelets.


Assuntos
Proteínas Sanguíneas/química , Lipoproteínas HDL/química , Peptídeos/análise , Fosfolipídeos/química , Sequência de Aminoácidos , Plaquetas/química , Cromatografia Líquida , Humanos , Dados de Sequência Molecular , Oxirredução , Proteólise , Espectrometria de Massas em Tandem , Tripsina/química
19.
Nat Med ; 13(9): 1086-95, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17721545

RESUMO

Dyslipidemia is associated with a prothrombotic phenotype; however, the mechanisms responsible for enhanced platelet reactivity remain unclear. Proatherosclerotic lipid abnormalities are associated with both enhanced oxidant stress and the generation of biologically active oxidized lipids, including potential ligands for the scavenger receptor CD36, a major platelet glycoprotein. Using multiple mouse in vivo thrombosis models, we now demonstrate that genetic deletion of Cd36 protects mice from hyperlipidemia-associated enhanced platelet reactivity and the accompanying prothrombotic phenotype. Structurally defined oxidized choline glycerophospholipids that serve as high-affinity ligands for CD36 were at markedly increased levels in the plasma of hyperlipidemic mice and in the plasma of humans with low HDL levels, were able to bind platelets via CD36 and, at pathophysiological levels, promoted platelet activation via CD36. Thus, interactions of platelet CD36 with specific endogenous oxidized lipids play a crucial role in the well-known clinical associations between dyslipidemia, oxidant stress and a prothrombotic phenotype.


Assuntos
Plaquetas/fisiologia , Antígenos CD36/fisiologia , Deleção de Genes , Hiperlipidemias/sangue , Estresse Oxidativo , Protrombina/genética , Trombose/imunologia , Animais , Antígenos CD/fisiologia , Antígenos CD36/genética , Dislipidemias/sangue , Dislipidemias/genética , Humanos , Hiperlipidemias/imunologia , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Fosfolipídeos/sangue , Ativação Plaquetária , Trombose/sangue
20.
Elife ; 122024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483447

RESUMO

The etiology of hair loss remains enigmatic, and current remedies remain inadequate. Transcriptome analysis of aging hair follicles uncovered changes in immune pathways, including Toll-like receptors (TLRs). Our findings demonstrate that the maintenance of hair follicle homeostasis and the regeneration capacity after damage depend on TLR2 in hair follicle stem cells (HFSCs). In healthy hair follicles, TLR2 is expressed in a cycle-dependent manner and governs HFSCs activation by countering inhibitory BMP signaling. Hair follicles in aging and obesity exhibit a decrease in both TLR2 and its endogenous ligand carboxyethylpyrrole (CEP), a metabolite of polyunsaturated fatty acids. Administration of CEP stimulates hair regeneration through a TLR2-dependent mechanism. These results establish a novel connection between TLR2-mediated innate immunity and HFSC activation, which is pivotal to hair follicle health and the prevention of hair loss and provide new avenues for therapeutic intervention.


Assuntos
Folículo Piloso , Receptor 2 Toll-Like , Humanos , Cabelo , Alopecia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA