Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 454(7201): 241-5, 2008 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-18528333

RESUMO

Drosophila neuroblasts and ovarian stem cells are well characterized models for stem cell biology. In both cell types, one daughter cell self-renews continuously while the other undergoes a limited number of divisions, stops to proliferate mitotically and differentiates. Whereas neuroblasts segregate the Trim-NHL (tripartite motif and Ncl-1, HT2A and Lin-41 domain)-containing protein Brain tumour (Brat) into one of the two daughter cells, ovarian stem cells are regulated by an extracellular signal from the surrounding stem cell niche. After division, one daughter cell looses niche contact. It undergoes 4 transit-amplifying divisions to form a cyst of 16 interconnected cells that reduce their rate of growth and stop to proliferate mitotically. Here we show that the Trim-NHL protein Mei-P26 (refs 7, 8) restricts growth and proliferation in the ovarian stem cell lineage. Mei-P26 expression is low in stem cells but is strongly induced in 16-cell cysts. In mei-P26 mutants, transit-amplifying cells are larger and proliferate indefinitely leading to the formation of an ovarian tumour. Like brat, mei-P26 regulates nucleolar size and can induce differentiation in Drosophila neuroblasts, suggesting that these genes act through the same pathway. We identify Argonaute-1, a component of the RISC complex, as a common binding partner of Brat and Mei-P26, and show that Mei-P26 acts by inhibiting the microRNA pathway. Mei-P26 and Brat have a similar domain composition that is also found in other tumour suppressors and might be a defining property of a new family of microRNA regulators that act specifically in stem cell lineages.


Assuntos
Linhagem da Célula , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , MicroRNAs/metabolismo , Ovário/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Proteínas Argonautas , Ciclo Celular , Diferenciação Celular , Crescimento Celular , Linhagem Celular , Nucléolo Celular/metabolismo , Tamanho Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/classificação , Drosophila melanogaster/genética , Fatores de Iniciação em Eucariotos , Feminino , MicroRNAs/genética , Mutação , Neurônios/citologia , Neurônios/metabolismo , Ovário/metabolismo
2.
Cell Commun Signal ; 11(1): 26, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23590848

RESUMO

BACKGROUND: Insulin/insulin-like growth factor signalling (IIS) has been described as one of the major pathways involved in growth control and homeostasis in multicellular organisms. Whereas its core components are well established, less is known about the molecular functions of IIS regulators. The adaptor molecule Lnk/SH2B has been implicated in IIS but the mechanism by which it promotes IIS activity has remained enigmatic. RESULTS: In this study, we analyse genetic and physical interactions among InR, Chico and Lnk in Drosophila tissues. FRET analysis reveals in vivo binding between all three molecules. Genetically, Lnk acts upstream of Chico. We demonstrate that Chico's plasma membrane localisation is ensured by both its PH domain and by the interaction with Lnk. Furthermore, Lnk is able to recruit an intracellular InR fragment to the membrane. CONCLUSIONS: Thus, by acting as a scaffolding molecule that ensures InR and Chico enrichment at the membrane, Lnk provides a fail-safe mechanism for IIS activation.

3.
Nat Commun ; 9(1): 4675, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405122

RESUMO

Disruption of epithelial integrity contributes to chronic inflammatory disorders through persistent activation of stress signalling. Here we uncover a mechanism whereby disruption of apico-basal polarity promotes stress signalling. We show that depletion of Scribbled (Scrib), a baso-lateral determinant, causes epithelial cells to release adenosine through equilibrative channels into the extracellular space. Autocrine activation of the adenosine receptor leads to transcriptional upregulation of TNF, which in turn boosts the activity of JNK signalling. Thus, disruption of cell polarity feeds into a well-established stress pathway through the intermediary of an adenosine signalling branch. Although this regulatory input could help ensuring an effective response to acute polarity stress, we suggest that it becomes deleterious in situations of low-grade chronic disruption by provoking a private inflammatory-like TNF-driven response within the polarity-deficient epithelium.


Assuntos
Adenosina/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Membrana/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Drosophila melanogaster , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais , Estresse Fisiológico , Transcrição Gênica
4.
PLoS One ; 8(6): e67208, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840627

RESUMO

The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid) contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hemolinfa/metabolismo , Animais , Proteínas Sanguíneas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Privação de Alimentos/fisiologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Anotação de Sequência Molecular , Proteoma/genética , Proteoma/metabolismo
5.
Curr Biol ; 22(5): 389-96, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22305752

RESUMO

The conserved Hippo signaling pathway acts in growth control and is fundamental to animal development and oncogenesis. Hippo signaling has also been implicated in adult midgut homeostasis in Drosophila. Regulated divisions of intestinal stem cells (ISCs), giving rise to an ISC and an enteroblast (EB) that differentiates into an enterocyte (EC) or an enteroendocrine (EE) cell, enable rapid tissue turnover in response to intestinal stress. The damage-related increase in ISC proliferation requires deactivation of the Hippo pathway and consequential activation of the transcriptional coactivator Yorkie (Yki) in both ECs and ISCs. Here, we identify Pez, an evolutionarily conserved FERM domain protein containing a protein tyrosine phosphatase (PTP) domain, as a novel binding partner of the upstream Hippo signaling component Kibra. Pez function--but not its PTP domain--is essential for Hippo pathway activity specifically in the fly midgut epithelium. Thus, Pez displays a tissue-specific requirement and functions as a negative upstream regulator of Yki in the regulation of ISC proliferation.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Drosophila/fisiologia , Receptores ErbB/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citologia , Janus Quinases/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
6.
Dev Cell ; 18(2): 309-16, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20159600

RESUMO

The conserved Hippo kinase pathway plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. Whereas the function of the core kinase cascade, consisting of the serine/threonine kinases Hippo and Warts, in phosphorylating and thereby inactivating the transcriptional coactivator Yorkie is well established, much less is known about the upstream events that regulate Hippo signaling activity. The FERM domain proteins Expanded and Merlin appear to represent two different signaling branches that feed into the Hippo pathway. Signaling by the atypical cadherin Fat may act via Expanded, but how Merlin is regulated has remained elusive. Here, we show that the WW domain protein Kibra is a Hippo signaling component upstream of Hippo and Merlin. Kibra acts synergistically with Expanded, and it physically interacts with Merlin. Thus, Kibra predominantly acts in the Merlin branch upstream of the core kinase cascade to regulate Hippo signaling.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Animais Geneticamente Modificados , Apoptose , Contagem de Células , Linhagem Celular , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Epistasia Genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Mutação , Neurofibromina 2/genética , Neurofibromina 2/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Tamanho do Órgão , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Transdução de Sinais , Transativadores/genética , Transativadores/fisiologia , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA