Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Genome Res ; 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961776

RESUMO

Competing endogenous RNAs (ceRNAs) are vital regulators of gene networks in mammals. The involvement of noncoding RNAs (ncRNAs) as ceRNA in genotypic sex determination (GSD) and environmental sex determination (ESD) in fish is unknown. The Chinese tongue sole, which has both GSD and ESD mechanisms, was used to map the dynamic expression pattern of ncRNAs and mRNA in gonads during sex determination and differentiation. Transcript expression patterns shift during the sex differentiation phase, and ceRNA modulation occurs through crosstalk of differentially expressed long ncRNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and sex-related genes in fish. Of note was the significant up-regulation of a circRNA from the sex-determining gene dmrt1 (circular RNA dmrt1) and a lncRNA, called AMSDT (which stands for associated with male sex differentiation of tongue sole) in Chinese tongue sole testis. These two ncRNAs both share the same miRNA response elements with gsdf, which has an up-regulated expression when they bind to miRNA cse-miR-196 and concurrent down-regulated female sex-related genes to facilitate testis differentiation. This is the first demonstration in fish that ceRNA crosstalk mediated by ncRNAs modulates sexual development and unveils a novel regulatory mechanism for sex determination and differentiation.

2.
EMBO J ; 39(4): e102723, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31880004

RESUMO

Cilia serve as cellular antennae that translate sensory information into physiological responses. In the sperm flagellum, a single chemoattractant molecule can trigger a Ca2+ rise that controls motility. The mechanisms underlying such ultra-sensitivity are ill-defined. Here, we determine by mass spectrometry the copy number of nineteen chemosensory signaling proteins in sperm flagella from the sea urchin Arbacia punctulata. Proteins are up to 1,000-fold more abundant than the free cellular messengers cAMP, cGMP, H+ , and Ca2+ . Opto-chemical techniques show that high protein concentrations kinetically compartmentalize the flagellum: Within milliseconds, cGMP is relayed from the receptor guanylate cyclase to a cGMP-gated channel that serves as a perfect chemo-electrical transducer. cGMP is rapidly hydrolyzed, possibly via "substrate channeling" from the channel to the phosphodiesterase PDE5. The channel/PDE5 tandem encodes cGMP turnover rates rather than concentrations. The rate-detection mechanism allows continuous stimulus sampling over a wide dynamic range. The textbook notion of signal amplification-few enzyme molecules process many messenger molecules-does not hold for sperm flagella. Instead, high protein concentrations ascertain messenger detection. Similar mechanisms may occur in other small compartments like primary cilia or dendritic spines.


Assuntos
Arbacia/fisiologia , Quimiotaxia , Proteômica , Transdução de Sinais , Animais , Arbacia/ultraestrutura , Cálcio/metabolismo , Cílios/fisiologia , Cílios/ultraestrutura , GMP Cíclico/metabolismo , Tomografia com Microscopia Eletrônica , Flagelos/fisiologia , Flagelos/ultraestrutura , Guanilato Ciclase/metabolismo , Masculino , Espectrometria de Massas , Espermatozoides/fisiologia , Espermatozoides/ultraestrutura
3.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612566

RESUMO

Rubisco large-subunit methyltransferase (LSMT), a SET-domain protein lysine methyltransferase, catalyzes the formation of trimethyl-lysine in the large subunit of Rubisco or in fructose-1,6-bisphosphate aldolases (FBAs). Rubisco and FBAs are both vital proteins involved in CO2 fixation in chloroplasts; however, the physiological effect of their trimethylation remains unknown. In Nannochloropsis oceanica, a homolog of LSMT (NoLSMT) is found. Phylogenetic analysis indicates that NoLSMT and other algae LSMTs are clustered in a basal position, suggesting that algal species are the origin of LSMT. As NoLSMT lacks the His-Ala/ProTrp triad, it is predicted to have FBAs as its substrate instead of Rubisco. The 18-20% reduced abundance of FBA methylation in NoLSMT-defective mutants further confirms this observation. Moreover, this gene (nolsmt) can be induced by low-CO2 conditions. Intriguingly, NoLSMT-knockout N. oceanica mutants exhibit a 9.7-13.8% increase in dry weight and enhanced growth, which is attributed to the alleviation of photoinhibition under high-light stress. This suggests that the elimination of FBA trimethylation facilitates carbon fixation under high-light stress conditions. These findings have implications in engineering carbon fixation to improve microalgae biomass production.


Assuntos
Aldeído Liases , Lisina , Ribulose-Bifosfato Carboxilase/genética , Biomassa , Dióxido de Carbono , Filogenia , Frutose-Bifosfato Aldolase , Histona-Lisina N-Metiltransferase , Cloroplastos/genética
4.
Biochem J ; 479(22): 2365-2377, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36373632

RESUMO

Phytoene synthase (PSY) converts two molecules of geranyl-geranyl diphosphate to phytoene, the key regulatory step in carotenogenesis. However, post-translational mechanisms that control PSY expression are scarcely understood. Carotenoid biosynthesis (mainly bacterioruberin) is a distinctive feature of haloarchaea thriving in hypersaline environments. Carotenogenesis is negatively regulated by the AAA+ LonB protease in the haloarchaeon Haloferax volcanii as it controls PSY degradation. We investigated the relevance of the C-terminal portion of HvPSY as a regulatory element for carotenoid biosynthesis. H. volcanii mutants were constructed to express full-length HvPSY protein (strain HVPSYwt) and truncated HvPSY lacking 10 (HVPSY10), 20 (HVPSY20) or 34 amino acids (HVPSY34) at the C-terminus. Cells of HVPSY20 and HVPSY34 showed hyperpigmentation (bacterioruberin content 3-fold higher than HVPSYwt) which correlated with increased PSY protein abundance (2-fold in HVPSY34) while they contained less psy transcript level compared with HVPSYwt. In vivo degradation assays showed that HvPSY34 was more stable than HvPSYwt. Collectively, these results show that the C-terminal region of HvPSY contains a 'recognition determinant' for proteolysis in H. volcanii. Preliminary evidence suggests that LonB is involved in the recognition mechanism. This study provides the first identification of a regulatory sequence in an archaeal PSY for the post-translational control of carotenogenesis.


Assuntos
Haloferax volcanii , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Glicogênio Sintase , Carotenoides/química
5.
Proc Natl Acad Sci U S A ; 117(39): 24359-24368, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32938798

RESUMO

The mechanisms underlying sex determination are astonishingly plastic. Particularly the triggers for the molecular machinery, which recalls either the male or female developmental program, are highly variable and have evolved independently and repeatedly. Fish show a huge variety of sex determination systems, including both genetic and environmental triggers. The advent of sex chromosomes is assumed to stabilize genetic sex determination. However, because sex chromosomes are notoriously cluttered with repetitive DNA and pseudogenes, the study of their evolution is hampered. Here we reconstruct the birth of a Y chromosome present in the Atlantic herring. The region is tiny (230 kb) and contains only three intact genes. The candidate male-determining gene BMPR1BBY encodes a truncated form of a BMP1B receptor, which originated by gene duplication and translocation and underwent rapid protein evolution. BMPR1BBY phosphorylates SMADs in the absence of ligand and thus has the potential to induce testis formation. The Y region also contains two genes encoding subunits of the sperm-specific Ca2+ channel CatSper required for male fertility. The herring Y chromosome conforms with a characteristic feature of many sex chromosomes, namely, suppressed recombination between a sex-determining factor and genes that are beneficial for the given sex. However, the herring Y differs from other sex chromosomes in that suppression of recombination is restricted to an ∼500-kb region harboring the male-specific and sex-associated regions. As a consequence, any degeneration on the herring Y chromosome is restricted to those genes located in the small region affected by suppressed recombination.


Assuntos
Peixes/genética , Cromossomos Sexuais/genética , Animais , Evolução Molecular , Feminino , Proteínas de Peixes/genética , Peixes/fisiologia , Duplicação Gênica , Masculino , Reprodução
6.
Reproduction ; 163(5): 251-266, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35192508

RESUMO

Sperm capacitation in mammals is a fundamental requirement to acquire their fertilizing capacity. Little is known about the action mechanism of the molecules that prevent capacitation from occurring prematurely. These molecules are known as decapacitation factors (DFs) and they must be removed from the sperm surface for capacitation to occur successfully. Serine protease inhibitor Kazal type 3 (SPINK3) has been proposed as one of these DFs. Here, we evaluate how this protein binds to mouse sperm and its removal kinetics. We describe that SPINK3 is capable of binding to the membrane of mature epididymal sperm through protein-lipid interactions, specifically to lipid rafts subcellular fraction. Moreover, cholera toxin subunit b (CTB) avoids SPINK3 binding. We observe that SPINK3 is removed from the sperm under in vitro capacitating conditions and by the uterine fluid from estrus females. Our ex vivo studies show the removal kinetics of this protein within the female tract, losing SPINK3 formerly from the apical region of the sperm in the uterus and later from the flagellar region within the oviduct. The presence of acrosome-reacted sperm in the female duct concurs with the absence of SPINK3 over its surface.


Assuntos
Inibidores de Serina Proteinase , Espermatozoides , Acrossomo , Animais , Feminino , Fertilização , Humanos , Masculino , Mamíferos , Camundongos , Capacitação Espermática , Espermatozoides/metabolismo
7.
Plant J ; 104(6): 1736-1745, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103271

RESUMO

Nannochloropsis species, unicellular industrial oleaginous microalgae, are model organisms for microalgal systems and synthetic biology. To facilitate community-based annotation and mining of the rapidly accumulating functional genomics resources, we have initiated an international consortium and present a comprehensive multi-omics resource database named Nannochloropsis Design and Synthesis (NanDeSyn; http://nandesyn.single-cell.cn). Via the Tripal toolkit, it features user-friendly interfaces hosting genomic resources with gene annotations and transcriptomic and proteomic data for six Nannochloropsis species, including two updated genomes of Nannochloropsis oceanica IMET1 and Nannochloropsis salina CCMP1776. Toolboxes for search, Blast, synteny view, enrichment analysis, metabolic pathway analysis, a genome browser, etc. are also included. In addition, functional validation of genes is indicated based on phenotypes of mutants and relevant bibliography. Furthermore, epigenomic resources are also incorporated, especially for sequencing of small RNAs including microRNAs and circular RNAs. Such comprehensive and integrated landscapes of Nannochloropsis genomics and epigenomics will promote and accelerate community efforts in systems and synthetic biology of these industrially important microalgae.


Assuntos
Microalgas/metabolismo , Bases de Dados como Assunto , Epigenômica , Genoma/genética , Genômica , Internet , Redes e Vias Metabólicas , Microalgas/genética , Proteômica , RNA Citoplasmático Pequeno , Biologia Sintética , Transcriptoma/genética
8.
BMC Bioinformatics ; 21(1): 23, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964336

RESUMO

BACKGROUND: Network inference is an important aim of systems biology. It enables the transformation of OMICs datasets into biological knowledge. It consists of reverse engineering gene regulatory networks from OMICs data, such as RNAseq or mass spectrometry-based proteomics data, through computational methods. This approach allows to identify signalling pathways involved in specific biological functions. The ability to infer causality in gene regulatory networks, in addition to correlation, is crucial for several modelling approaches and allows targeted control in biotechnology applications. METHODS: We performed simulations according to the approximate Bayesian computation method, where the core model consisted of a steady-state simulation algorithm used to study gene regulatory networks in systems for which a limited level of details is available. The simulations outcome was compared to experimentally measured transcriptomics and proteomics data through approximate Bayesian computation. RESULTS: The structure of small gene regulatory networks responsible for the regulation of biological functions involved in biomining were inferred from multi OMICs data of mixed bacterial cultures. Several causal inter- and intraspecies interactions were inferred between genes coding for proteins involved in the biomining process, such as heavy metal transport, DNA damage, replication and repair, and membrane biogenesis. The method also provided indications for the role of several uncharacterized proteins by the inferred connection in their network context. CONCLUSIONS: The combination of fast algorithms with high-performance computing allowed the simulation of a multitude of gene regulatory networks and their comparison to experimentally measured OMICs data through approximate Bayesian computation, enabling the probabilistic inference of causality in gene regulatory networks of a multispecies bacterial system involved in biomining without need of single-cell or multiple perturbation experiments. This information can be used to influence biological functions and control specific processes in biotechnology applications.


Assuntos
Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Proteômica , Algoritmos , Bactérias/genética , Teorema de Bayes , Biologia Computacional/métodos , Simulação por Computador , Transdução de Sinais , Biologia de Sistemas/métodos
9.
J Phycol ; 56(6): 1664-1675, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33460107

RESUMO

Neoporphyra haitanensis is an economically important red seaweed that inhabits upper intertidal zones. The thallus tolerates extreme fluctuating environmental stresses (e.g., surviving more than 80% water loss during low tides). To elucidate the global molecular responses relevant to this outstanding desiccation tolerance, a quantitative proteomics analysis of N. haitanensis under different desiccation treatments as well as rehydration was performed. According to the clustering of expression patterns and the functional interpretation of the 483 significantly differentially expressed proteins, a three-stage cellular response to desiccation stress and subsequent rehydration was proposed. Stage I: at the beginning of water loss, multiple signal transduction pathways were triggered including lipid signaling, protein phosphorylation cascades, and histone acetylation controlling acetate biosynthesis to further modulate downstream hormone signaling. Protein protection by peptidyl-prolyl isomerase and ROS scavenging systems were also immediately switched on. Stage II: with the aggravation of stress, increases in antioxidant systems, the accumulation of LEA proteins, and the temporary biosynthesis of branched starch were observed. Multiple enzymes involved in redox homeostasis, including peroxiredoxin, thioredoxin, ascorbate peroxidase, superoxide dismutase, glutathione peroxidase, and glutathione reductase, were hypothesized to function in specific cellular compartments. Stage III: when the desiccated thalli had rehydrated for 30 mins, photosynthesis and carbon fixation were recovered, and antioxidant activities and protein structure protection were maintained at a high level. This work increases the understanding of the molecular responses to environmental stresses via a proteomic approach in red seaweeds and paves the way for further functional studies and genetic engineering.


Assuntos
Alga Marinha , Antioxidantes , Dessecação , Proteômica , Estresse Fisiológico
10.
EMBO J ; 34(3): 379-92, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25535245

RESUMO

Sperm guidance is controlled by chemical and physical cues. In many species, Ca(2+) bursts in the flagellum govern navigation to the egg. In Arbacia punctulata, a model system of sperm chemotaxis, a cGMP signaling pathway controls these Ca(2+) bursts. The underlying Ca(2+) channel and its mechanisms of activation are unknown. Here, we identify CatSper Ca(2+) channels in the flagellum of A. punctulata sperm. We show that CatSper mediates the chemoattractant-evoked Ca(2+) influx and controls chemotactic steering; a concomitant alkalization serves as a highly cooperative mechanism that enables CatSper to transduce periodic voltage changes into Ca(2+) bursts. Our results reveal intriguing phylogenetic commonalities but also variations between marine invertebrates and mammals regarding the function and control of CatSper. The variations probably reflect functional and mechanistic adaptations that evolved during the transition from external to internal fertilization.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Quimiotaxia/fisiologia , Evolução Molecular , Potenciais da Membrana/fisiologia , Ouriços-do-Mar/metabolismo , Animais , Canais de Cálcio/genética , Masculino , Ouriços-do-Mar/genética
11.
Metab Eng ; 54: 96-108, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30904735

RESUMO

Improving acid tolerance is pivotal to the development of microalgal feedstock for converting flue gas to biomass or oils. In the industrial oleaginous microalga Nannochloropsis oceanica, transcript knockdown of a cytosolic carbonic anhydrase (CA2), which is a key Carbon Concentrating Mechanism (CCM) component induced under 100 ppm CO2 (very low carbon, or VLC), results in ∼45%, ∼30% and ∼40% elevation of photosynthetic oxygen evolution rate, growth rate and biomass accumulation rate respectively under 5% CO2 (high carbon, or HC), as compared to the wild type. Such high-CO2-level activated biomass over-production is reproducible across photobioreactor types and cultivation scales. Transcriptomic, proteomic and physiological changes of the mutant under high CO2 (HC; 5% CO2) suggest a mechanism where the higher pH tolerance is coupled to reduced biophysical CCM, sustained pH hemostasis, stimulated energy intake and enhanced photosynthesis. Thus "inactivation of CCM" can generate hyper-CO2-assimilating and autonomously containable industrial microalgae for flue gas-based oil production.


Assuntos
Dióxido de Carbono/metabolismo , Anidrase Carbônica II/deficiência , Técnicas de Silenciamento de Genes , Microalgas/metabolismo , Fotossíntese , Estramenópilas/metabolismo , Concentração de Íons de Hidrogênio , Microalgas/genética , Estramenópilas/genética
12.
Proteomics ; 18(14): e1800116, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29888524

RESUMO

The dynamic changes that take place along the phases of microbial growth (lag, exponential, stationary, and death) have been widely studied in bacteria at the molecular and cellular levels, but little is known for archaea. In this study, a high-throughput approach was used to analyze and compare the proteomes of two haloarchaea during exponential and stationary growth: the neutrophilic Haloferax volcanii and the alkaliphilic Natrialba magadii. Almost 2000 proteins were identified in each species (≈50% of the predicted proteome). Among them, 532 and 432 were found to be differential between growth phases in H. volcanii and N. magadii, respectively. Changes upon entrance into stationary phase included an overall increase in proteins involved in the transport of small molecules and ions, stress response, and fatty acid catabolism. Proteins related to genetic processes and cell division showed a notorious decrease in amount. The data reported in this study not only contributes to our understanding of the exponential-stationary growth phase transition in extremophilic archaea but also provides the first comprehensive analysis of the proteome composition of N. magadii. The MS proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier JPST000395.


Assuntos
Proteínas Arqueais/metabolismo , Halobacteriaceae/crescimento & desenvolvimento , Halobacteriaceae/metabolismo , Haloferax volcanii/crescimento & desenvolvimento , Haloferax volcanii/metabolismo , Espectrometria de Massas/métodos , Proteoma/análise
13.
J Proteome Res ; 17(3): 961-977, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301397

RESUMO

Rhomboids are conserved intramembrane serine proteases involved in cell signaling processes. Their role in prokaryotes is scarcely known and remains to be investigated in Archaea. We previously constructed a rhomboid homologue deletion mutant (ΔrhoII) in Haloferax volcanii, which showed reduced motility, increased novobiocin sensitivity, and an N- glycosylation defect. To address the impact of rhoII deletion on H. volcanii physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. A total of 1847 proteins were identified (45.8% of H. volcanii predicted proteome), from which 103 differed in amount. Additionally, the mutant strain evidenced 99 proteins with altered electrophoretic migration, which suggested differential post-translational processing/modification. Integral membrane proteins that evidenced variations in concentration, electrophoretic migration, or semitryptic cleavage in the mutant were considered as potential RhoII targets. These included a PrsW protease homologue (which was less stable in the mutant strain), a predicted halocyanin, and six integral membrane proteins potentially related to the mutant glycosylation (S-layer glycoprotein, Agl15) and cell adhesion/motility (flagellin1, HVO_1153, PilA1, and PibD) defects. This study investigated for the first time the impact of a rhomboid protease on the whole proteome of an organism.


Assuntos
Proteínas Arqueais/genética , Deleção de Genes , Regulação da Expressão Gênica em Archaea , Haloferax volcanii/genética , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteínas Arqueais/classificação , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Adesão Celular , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Endopeptidases/deficiência , Endopeptidases/genética , Ontologia Genética , Glicosilação , Haloferax volcanii/química , Haloferax volcanii/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Metaloproteínas/genética , Metaloproteínas/metabolismo , Anotação de Sequência Molecular , Proteoma/classificação , Proteoma/isolamento & purificação , Proteoma/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato
14.
J Proteome Res ; 17(3): 1158-1171, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29411617

RESUMO

The membrane protease LonB is an essential protein in the archaeon Haloferax volcanii and globally impacts its physiology. However, natural substrates of the archaeal Lon protease have not been identified. The whole proteome turnover was examined in a H. volcanii LonB mutant under reduced and physiological protease levels. LC-MS/MS combined with stable isotope labeling was applied for the identification/quantitation of membrane and cytoplasm proteins. Differential synthesis and degradation rates were evidenced for 414 proteins in response to Lon expression. A total of 58 proteins involved in diverse cellular processes showed a degradation pattern (none/very little degradation in the absence of Lon and increased degradation in the presence of Lon) consistent with a LonB substrate, which was further substantiated for several of these candidates by pull-down assays. The most notable was phytoene synthase (PSY), the rate-limiting enzyme in carotenoid biosynthesis. The rapid degradation of PSY upon LonB induction in addition to the remarkable stabilization of this protein and hyperpigmentation phenotype in the Lon mutant strongly suggest that PSY is a LonB substrate. This work identifies for the first time candidate targets of the archaeal Lon protease and establishes proteolysis by Lon as a novel post-translational regulatory mechanism of carotenogenesis.


Assuntos
Proteínas Arqueais/metabolismo , Carotenoides/biossíntese , Regulação da Expressão Gênica em Archaea , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Haloferax volcanii/enzimologia , Protease La/metabolismo , Proteoma/metabolismo , Proteínas Arqueais/genética , Cromatografia Líquida , Ontologia Genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Haloferax volcanii/genética , Marcação por Isótopo/métodos , Anotação de Sequência Molecular , Mutação , Protease La/genética , Biossíntese de Proteínas , Proteólise , Proteoma/genética , Especificidade por Substrato , Espectrometria de Massas em Tandem
15.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150517

RESUMO

Leptospirillum ferriphilum plays a major role in acidic, metal-rich environments, where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as biomining operations. Despite its perceived importance, no complete genome sequence of the type strain of this model species is available, limiting the possibilities to investigate the strategies and adaptations that Leptospirillum ferriphilum DSM 14647T (here referred to as Leptospirillum ferriphilumT) applies to survive and compete in its niche. This study presents a complete, circular genome of Leptospirillum ferriphilumT obtained by PacBio single-molecule real-time (SMRT) long-read sequencing for use as a high-quality reference. Analysis of the functionally annotated genome, mRNA transcripts, and protein concentrations revealed a previously undiscovered nitrogenase cluster for atmospheric nitrogen fixation and elucidated metabolic systems taking part in energy conservation, carbon fixation, pH homeostasis, heavy metal tolerance, the oxidative stress response, chemotaxis and motility, quorum sensing, and biofilm formation. Additionally, mRNA transcript counts and protein concentrations were compared between cells grown in continuous culture using ferrous iron as the substrate and those grown in bioleaching cultures containing chalcopyrite (CuFeS2). Adaptations of Leptospirillum ferriphilumT to growth on chalcopyrite included the possibly enhanced production of reducing power, reduced carbon dioxide fixation, as well as elevated levels of RNA transcripts and proteins involved in heavy metal resistance, with special emphasis on copper efflux systems. Finally, the expression and translation of genes responsible for chemotaxis and motility were enhanced.IMPORTANCELeptospirillum ferriphilum is one of the most important iron oxidizers in the context of acidic and metal-rich environments during moderately thermophilic biomining. A high-quality circular genome of Leptospirillum ferriphilumT coupled with functional omics data provides new insights into its metabolic properties, such as the novel identification of genes for atmospheric nitrogen fixation, and represents an essential step for further accurate proteomic and transcriptomic investigation of this acidophile model species in the future. Additionally, light is shed on adaptation strategies of Leptospirillum ferriphilumT for growth on the copper mineral chalcopyrite. These data can be applied to deepen our understanding and optimization of bioleaching and biooxidation, techniques that present sustainable and environmentally friendly alternatives to many traditional methods for metal extraction.


Assuntos
Bactérias/genética , Genoma Bacteriano , Ferro/metabolismo , Proteoma , RNA Bacteriano/genética , Transcriptoma , Bactérias/classificação , Bactérias/metabolismo , Cobre/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Filogenia , Proteômica , RNA Bacteriano/metabolismo
16.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29475871

RESUMO

Among bacteria, only a single styrene-specific degradation pathway has been reported so far. It comprises the activity of styrene monooxygenase, styrene oxide isomerase, and phenylacetaldehyde dehydrogenase, yielding phenylacetic acid as the central metabolite. The alternative route comprises ring-hydroxylating enzymes and yields vinyl catechol as central metabolite, which undergoes meta-cleavage. This was reported to be unspecific and also allows the degradation of benzene derivatives. However, some bacteria had been described to degrade styrene but do not employ one of those routes or only parts of them. Here, we describe a novel "hybrid" degradation pathway for styrene located on a plasmid of foreign origin. As putatively also unspecific, it allows metabolizing chemically analogous compounds (e.g., halogenated and/or alkylated styrene derivatives). Gordonia rubripertincta CWB2 was isolated with styrene as the sole source of carbon and energy. It employs an assembled route of the styrene side-chain degradation and isoprene degradation pathways that also funnels into phenylacetic acid as the central metabolite. Metabolites, enzyme activity, genome, transcriptome, and proteome data reinforce this observation and allow us to understand this biotechnologically relevant pathway, which can be used for the production of ibuprofen.IMPORTANCE The degradation of xenobiotics by bacteria is not only important for bioremediation but also because the involved enzymes are potential catalysts in biotechnological applications. This study reveals a novel degradation pathway for the hazardous organic compound styrene in Gordonia rubripertincta CWB2. This study provides an impressive illustration of horizontal gene transfer, which enables novel metabolic capabilities. This study presents glutathione-dependent styrene metabolization in an (actino-)bacterium. Further, the genomic background of the ability of strain CWB2 to produce ibuprofen is demonstrated.


Assuntos
Butadienos/metabolismo , Glutationa/metabolismo , Bactéria Gordonia/metabolismo , Hemiterpenos/metabolismo , Estireno/metabolismo , Biodegradação Ambiental , Plasmídeos/isolamento & purificação
17.
Circ Res ; 118(12): 1906-17, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27140435

RESUMO

RATIONALE: Activated cardiac fibroblasts (CF) are crucial players in the cardiac damage response; excess fibrosis, however, may result in myocardial stiffening and heart failure development. Inhibition of activated CF has been suggested as a therapeutic strategy in cardiac disease, but whether this truly improves cardiac function is unclear. OBJECTIVE: To study the effect of CF ablation on cardiac remodeling. METHODS AND RESULTS: We characterized subgroups of murine CF by single-cell expression analysis and identified periostin as the marker showing the highest correlation to an activated CF phenotype. We generated bacterial artificial chromosome-transgenic mice allowing tamoxifen-inducible Cre expression in periostin-positive cells as well as their diphtheria toxin-mediated ablation. In the healthy heart, periostin expression was restricted to valvular fibroblasts; ablation of this population did not affect cardiac function. After chronic angiotensin II exposure, ablation of activated CF resulted in significantly reduced cardiac fibrosis and improved cardiac function. After myocardial infarction, ablation of periostin-expressing CF resulted in reduced fibrosis without compromising scar stability, and cardiac function was significantly improved. Single-cell transcriptional analysis revealed reduced CF activation but increased expression of prohypertrophic factors in cardiac macrophages and cardiomyocytes, resulting in localized cardiomyocyte hypertrophy. CONCLUSIONS: Modulation of the activated CF population is a promising approach to prevent adverse cardiac remodeling in response to angiotensin II and after myocardial infarction.


Assuntos
Moléculas de Adesão Celular/metabolismo , Fibroblastos/metabolismo , Ventrículos do Coração/metabolismo , Infarto do Miocárdio/metabolismo , Remodelação Ventricular , Angiotensinas/toxicidade , Animais , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibrose , Ventrículos do Coração/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/etiologia , Miócitos Cardíacos/metabolismo
18.
Mol Cell Proteomics ; 15(5): 1692-709, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26884511

RESUMO

The free radical theory of aging is based on the idea that reactive oxygen species (ROS) may lead to the accumulation of age-related protein oxidation. Because themajority of cellular ROS is generated at the respiratory electron transport chain, this study focuses on the mitochondrial proteome of the aging model Podospora anserina as target for ROS-induced damage. To ensure the detection of even low abundant modified peptides, separation by long gradient nLC-ESI-MS/MS and an appropriate statistical workflow for iTRAQ quantification was developed. Artificial protein oxidation was minimized by establishing gel-free sample preparation in the presence of reducing and iron-chelating agents. This first large scale, oxidative modification-centric study for P. anserina allowed the comprehensive quantification of 22 different oxidative amino acid modifications, and notably the quantitative comparison of oxidized and nonoxidized protein species. In total 2341 proteins were quantified. For 746 both protein species (unmodified and oxidatively modified) were detected and the modification sites determined. The data revealed that methionine residues are preferably oxidized. Further prominent identified modifications in decreasing order of occurrence were carbonylation as well as formation of N-formylkynurenine and pyrrolidinone. Interestingly, for the majority of proteins a positive correlation of changes in protein amount and oxidative damage were noticed, and a general decrease in protein amounts at late age. However, it was discovered that few proteins changed in oxidative damage in accordance with former reports. Our data suggest that P. anserina is efficiently capable to counteract ROS-induced protein damage during aging as long as protein de novo synthesis is functioning, ultimately leading to an overall constant relationship between damaged and undamaged protein species. These findings contradict a massive increase in protein oxidation during aging and rather suggest a protein damage homeostasis mechanism even at late age.


Assuntos
Proteínas Fúngicas/análise , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Podospora/fisiologia , Proteômica/métodos , Cromatografia Líquida , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Homeostase , Marcação por Isótopo , Metionina/química , Proteínas Mitocondriais/química , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem
19.
PLoS Genet ; 11(3): e1005063, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25803043

RESUMO

Glycosphingolipids are key elements of cellular membranes, thereby, controlling a variety of cellular functions. Accumulation of the simple glycosphingolipid glucosylceramide results in life-threatening lipid storage-diseases or in male infertility. How glucosylceramide regulates cellular processes is ill defined. Here, we reveal that glucosylceramide accumulation in GBA2 knockout-mice alters cytoskeletal dynamics due to a more ordered lipid organization in the plasma membrane. In dermal fibroblasts, accumulation of glucosylceramide augments actin polymerization and promotes microtubules persistence, resulting in a higher number of filopodia and lamellipodia and longer microtubules. Similar cytoskeletal defects were observed in male germ and Sertoli cells from GBA2 knockout-mice. In particular, the organization of F-actin structures in the ectoplasmic specialization and microtubules in the sperm manchette is affected. Thus, glucosylceramide regulates cytoskeletal dynamics, providing mechanistic insights into how glucosylceramide controls signaling pathways not only during sperm development, but also in other cell types.


Assuntos
Actinas/metabolismo , Citoesqueleto/genética , Glucosilceramidas/genética , Metabolismo dos Lipídeos/genética , beta-Glucosidase/genética , Actinas/química , Animais , Membrana Celular/metabolismo , Membrana Celular/patologia , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Fibroblastos/metabolismo , Glucosilceramidas/química , Glucosilceramidas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/patologia , Pseudópodes/genética , Pseudópodes/metabolismo , Pseudópodes/patologia , Células de Sertoli/metabolismo , Células de Sertoli/patologia , beta-Glucosidase/metabolismo
20.
Proteomics ; 15(5-6): 915-29, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25490887

RESUMO

Experimental determination of absolute protein amounts is becoming increasingly important for the establishment and validation of biomarkers, and systems biology approaches aimed at a quantitative description of a biological process. Residing at compartmental or cellular barriers, and acting as prominent drug targets, integral membranes proteins, being completely embedded in the lipid bilayer, possess characteristic physicochemical properties and are often in low abundance. These features challenge the quantification with targeted MS and the ability to accurately determine the amount of membrane proteins with high sensitivity. This review summarizes the current status of targeted membrane protein quantification with emphasis on sample preparation beforehand MS. From the beginning to the end of a usual sample preparation workflow, consisting essentially of reference point selection, cell lysis, digestion, and addition of suitable isotope-labeled standards, general and particular challenges for membrane proteins will be discussed step by step. Based on the presentation of current achievements, possible measures to better address these challenges and future avenues of targeted membrane proteomics are presented.


Assuntos
Marcação por Isótopo , Espectrometria de Massas , Proteínas de Membrana/análise , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA