Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 48(19): 11146-53, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25171443

RESUMO

Perchlorate is a persistent and mobile contaminant in the environment with both natural and anthropogenic sources. Stable isotope ratios of oxygen (δ(18)O, Δ(17)O) and chlorine (δ(37)Cl) along with the abundance of the radioactive isotope (36)Cl were used to trace perchlorate sources and behavior in the Laurentian Great Lakes. These lakes were selected for study as a likely repository of recent atmospheric perchlorate deposition. Perchlorate concentrations in the Great Lakes range from 0.05 to 0.13 µg per liter. δ(37)Cl values of perchlorate from the Great Lakes range from +3.0‰ (Lake Ontario) to +4.0‰ (Lake Superior), whereas δ(18)O values range from -4.1‰ (Lake Superior) to +4.0‰ (Lake Erie). Great Lakes perchlorate has mass-independent oxygen isotopic variations with positive Δ(17)O values (+1.6‰ to +2.7‰) divided into two distinct groups: Lake Superior (+2.7‰) and the other four lakes (∼+1.7‰). The stable isotopic results indicate that perchlorate in the Great Lakes is dominantly of natural origin, having isotopic composition resembling that measured for indigenous perchlorate from preindustrial groundwaters of the western USA. The (36)Cl/Cl ratio of perchlorate varies widely from 7.4 × 10(-12) (Lake Ontario) to 6.7 × 10(-11) (Lake Superior). These (36)ClO4(-) abundances are consistent with an atmospheric origin of perchlorate in the Great Lakes. The relatively high (36)ClO4(-) abundances in the larger lakes (Lakes Superior and Michigan) could be explained by the presence of (36)Cl-enriched perchlorate deposited during the period of elevated atmospheric (36)Cl activity following thermonuclear bomb tests in the Pacific Ocean.


Assuntos
Lagos/química , Percloratos/química , Cloro/análise , Great Lakes Region , Água Subterrânea , Isótopos/análise , Percloratos/análise
2.
Langmuir ; 29(1): 29-37, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23215450

RESUMO

Using atomic level simulation we aimed to investigate various intermediate phases of the long chain alkyl sulfonate/water system. Overall, about 800 ns parallel molecular dynamics simulation study was conducted for a surfactant/water system consisting of 128 sodium pentadecyl sulfonate and 2251 water molecules. The GROMACS software code with united atom force field was applied. Despite some differences, the analysis of main structural parameters is in agreement with X-ray experimental findings. The mechanism of self-assembly of SPDS molecules was also examined. At T = 323 K we obtained both tilted fully interdigitated and liquid crystalline-like disordered hydrocarbon chains; hence, the presence of either gel phase that coexists with a lamellar phase or metastable gel phase with fraction of gauche configuration can be assumed. Further increase of temperature revealed that the system underwent a transition to a lamellar phase, which was clearly identified by the presence of fully disordered hydrocarbon chains. The transition from gel-to-fluid phase was implemented by simulated annealing treatment, and the phase transition point at T = 335 K was identified. The surfactant force field in its presented set is surely enabled to fully demonstrate the mechanism of self-assembly and the behavior of phase transition making it possible to get important information around the phase transition point.


Assuntos
Alcanossulfonatos/química , Simulação de Dinâmica Molecular , Água/química , Estrutura Molecular , Tensoativos/química
3.
J Mol Model ; 29(10): 316, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37710138

RESUMO

CONTEXT: The adsorption of 1-vinyl-1,2,4-triazole monomers on Au(111) surface was investigated via molecular dynamics method. Our results indicate that the surface coverage varied depending on the concentration of the monomers. Specifically, as the concentration of the monomers increased, the surface coverage also increased. At the highest concentrations, we observed up to 73% coverage of the metal surface. We show that the 1-vinyl-1,2,4-triazole monomers display a strong adsorption on gold surface, and the monomer binds to metal surface via heterocyclic pyridine-like nitrogen, and the distance between near nitrogen to gold is estimated to be 0.25 nm. Note that upon the concentration increase, we track the different layers of adsorption. METHOD: The 1-vinyl-1,2,4-triazole (VT) molecule was created using online resources of MOLVIEW. The Au {111} facet was taken from our previous simulation, and as a force field, the CHARMM-GOIP concept was used. As a water model, the SPC approach was used. The latest version of GROMACS with GPU support was used. The snapshots were generated with the VMD package.

4.
Environ Sci Technol ; 46(15): 8017-24, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22792864

RESUMO

South-central Arkansas (AR) is home to major manufacturing facilities for brominated flame retardant chemicals (BFRs) in the U.S. Unintended release during production may have caused accumulation of the BFRs in the local environment. In this work, sediment cores were collected from six water bodies in AR, including three located close to the BFR manufacturing facilities in El Dorado and Magnolia, to investigate past and recent deposition histories. A total of 49 polybromodiphenyl ethers (PBDEs) and decabromodiphenyl ethane (DBDPE) were detected, with concentrations as high as 57000 and 2400 ng/g dry weight for decabromodiphenyl ether (BDE209) and DBDPE, respectively. Log-log regression of BDE209 and DBDPE surface concentrations versus distance to known BFR manufacturing facilities fit the Gaussian Plume Dispersion model, and showed that, if the distance is shortened by half, concentrations of BDE209 and DBDPE would increase by 5-fold. The spatial distribution and temporal trend of the contamination indicate that the manufacturing of PBDEs and DBDPE is the primary source for these compounds in the environment of southern Arkansas. Interestingly, the occurrence of debromination of PBDEs in the sediments of a previously used wastewater sludge retention pond in Magnolia is indicated by the presence of congeners that had not been detected in any commercial PBDE mixtures and by increased fractions of lower brominated congeners relative to higher brominated congeners. Two unknown brominated compounds were detected in the sediments, and identified as nonabromodiphenyl ethanes.


Assuntos
Bromobenzenos/análise , Sedimentos Geológicos/química , Éteres Difenil Halogenados/análise , Poluentes Químicos da Água/química , Arkansas , Modelos Teóricos , Movimentos da Água
5.
Cells ; 11(19)2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36230950

RESUMO

Either extracts, cell-free suspensions or bacterial suspensions are used to study bacterial lipid peroxidation processes. Along with gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, and several other strategies, the thiobarbituric acid test is used for the determination of malondialdehyde (MDA) as the basis for the commercial test kits and the colorimetric detection of lipid peroxidation. The aim of the current study was to evaluate lipid peroxidation processes levels in the suspensions, extracts and culture supernatants of Escherichia coli and Salmonella Derby strains. The dependence of the formation of thiobarbituric acid-reactive substances levels in the cell extracts, the suspensions and cell-free supernatants on bacterial species, and their concentration and growth phase were revealed. The effect of bacterial concentrations on MDA formation was also found to be more pronounced in bacterial suspensions than in extracts, probably due to the dynamics of MDA release into the intercellular space. This study highlights the possible importance of MDA determination in both cell-free suspensions and extracts, as well as in bacterial suspensions to elucidate the role of lipid peroxidation processes in bacterial physiology, bacteria-host interactions, as well as in host physiology.


Assuntos
Escherichia coli , Estresse Oxidativo , Bactérias , Extratos Celulares , Malondialdeído , Salmonella
6.
Addict Behav ; 112: 106634, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920457

RESUMO

INTRODUCTION: More and more U.S. states are legalizing marijuana use for both recreational and medical purposes. This study estimated the prevalence of current marijuana use and identified its individual-level predictors among adult cancer survivors (CS) living in 15 U.S. states and territories. METHODS: U.S. nationally representative, cross-sectional data from the 2018 Behavioral Risk Factor Surveillance System Survey (BRFSS) Marijuana Use module were used. A total of 9325 CS was included. Analyses were weighted to account for BRFSS's complex survey design with results generalizable to 4.02 million CS. The outcome was current (past 30-day) marijuana use. Weighted prevalence estimates were computed. Multivariable logistic regression examined individual-level demographic, socio-economic, clinical, and behavioral predictors associated with marijuana use. RESULTS: Weighted analysis indicated that 9.2% reported current marijuana use, 50.5% of which used it for medical reasons with smoking being the main method of administration, 71.3%. Among racial/ethnic groups, non-Hispanic blacks had the highest prevalence of marijuana use (18.6%). The prevalence of current marijuana use decreased with age (P < .001). CS were more likely to use marijuana if they were male, non-Hispanic black (versus non-Hispanic whites), not married, uninsured, current and former tobacco smoker, binge drinker, ever having depressive disorder, and those who had fair/poor health. CONCLUSIONS: Marijuana use is prevalent among CS and certain subgroups are at higher risk for marijuana use. With the proliferation of marijuana legalization, identifying high-risk CS for marijuana use and informing them about its risks and safety is critical.


Assuntos
Sobreviventes de Câncer , Fumar Maconha , Uso da Maconha , Neoplasias , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Fumar Maconha/epidemiologia , Uso da Maconha/epidemiologia , Neoplasias/epidemiologia , Prevalência , Estados Unidos/epidemiologia
7.
J Mol Model ; 27(9): 261, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34432183

RESUMO

Microsecond timescale explicit-solvent atomistic simulations were carried out to investigate how anionic surfactants modulate protein structure and dynamics. We found that lysozyme undergoes near-complete denaturation at the high concentration (> 0.1 M) of sodium pentadecyl sulfonate (SPDS), while only partial denaturation occurs at the concentration slightly below 0.1 M. In large part, protein denaturation is structurally manifested by disappearance of helical segments and loss of tertiary interactions. The computational prediction of the extent of burial of cysteine residues was experimentally validated by measuring the accessibility of the respective sulfhydryl groups. Overall, our work indicates an interesting synergy between electrostatic and hydrophobic contributions to lysozyme's denaturation process by anionic surfactants. In fact, first disulfide bridges and hydrogen bonds from protein surface to SPDS head groups loosen the protein globule followed by fuller denaturation via insertion of the surfactant's hydrophobic tails into the protein core.


Assuntos
Simulação de Dinâmica Molecular , Muramidase/química , Desnaturação Proteica , Ácidos Sulfônicos/química , Tensoativos/química
8.
RSC Adv ; 10(14): 8152-8160, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497869

RESUMO

We show the formation of metallic spikes on the surface of gold nanotriangles (AuNTs) by using the same reduction process which has been used for the synthesis of gold nanostars. We confirm that silver nitrate operates as a shape-directing agent in combination with ascorbic acid as the reducing agent and investigate the mechanism by dissecting the contribution of each component, i.e., anionic surfactant dioctyl sodium sulfosuccinate (AOT), ascorbic acid (AA), and AgNO3. Molecular dynamics (MD) simulations show that AA attaches to the AOT bilayer of nanotriangles, and covers the surface of gold clusters, which is of special relevance for the spike formation process at the AuNT surface. The surface modification goes hand in hand with a change of the optical properties. The increased thickness of the triangles and a sizeable fraction of silver atoms covering the spikes lead to a blue-shift of the intense near infrared absorption of the AuNTs. The sponge-like spiky surface increases both the surface enhanced Raman scattering (SERS) cross section of the particles and the photo-catalytic activity in comparison with the unmodified triangles, which is exemplified by the plasmon-driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4'-dimercaptoazobenzene (DMAB).

9.
J Phys Chem B ; 113(5): 1303-10, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19175342

RESUMO

We have performed a 50 ns of molecular dynamics study of poly(diallyldimethylammonium chloride) (PDADMAC)/sodium dodecyl sulfate (SDS)/decanol/water systems. The influence of the cationic polyelectrolyte on the anionic SDS-based lamellar liquid crystalline system was investigated. The main structural parameters have been calculated and compared with experimental data. We obtain two types of PDADMAC conformation, a more folded structure A and a structure B where the PDADMAC molecule is adsorbed at the anionic head groups of the surfactant molecules. The polyelectrolyte-induced coexistence of two lamellar phases at a concentration of 2-3% of PDADMAC is observed, which is in agreement with experimental findings.


Assuntos
Álcoois Graxos/química , Polietilenos/química , Compostos de Amônio Quaternário/química , Dodecilsulfato de Sódio/química , Água/química , Simulação por Computador , Eletrólitos/química , Enxofre/química
10.
J Phys Chem B ; 123(4): 948-953, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30620593

RESUMO

A molecular dynamics study was done to reveal the adsorption properties of sodium dioctyl sulfosuccinate (AOT) bilayers on gold Au(111) surfaces. Examining the rotational mobility of AOT molecules, we track that the correlation time of AOT molecules on the adsorbed layer is much higher. The data estimating the diffusive motion of AOT molecule show a substantially lower rate of diffusion (∼10-10 cm2/s) in the adsorbed layers in comparison to other ones. The results show that an adsorbed layer is more rigid, whereas the outer layers undergo considerable lateral and vertical fluctuations.

11.
Protein Eng Des Sel ; 32(4): 175-190, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31788684

RESUMO

Anionic surfactants denature proteins at low millimolar concentrations, yet little is known about the underlying molecular mechanisms. Here, we undertake 1-µs-long atomistic molecular dynamics simulations of the denaturation of acyl coenzyme A binding protein (ACBP) and compare our results with previously published and new experimental data. Since increasing surfactant chain length is known to lead to more rapid denaturation, we studied denaturation using both the medium-length alkyl chain surfactant sodium dodecyl sulfate (SDS) and the long alkyl chain surfactant sodium hexadecyl sulfate (SHS). In silico denaturation on the microsecond timescale was not achieved using preformed surfactant micelles but required ACBP to be exposed to monomeric surfactant molecules. Micellar self-assembly occurred together with protein denaturation. To validate our analyses, we calculated small-angle X-ray scattering spectra of snapshots from the simulations. These agreed well with experimental equilibrium spectra recorded on ACBP-SDS mixtures with similar compositions. Protein denaturation occurs through the binding of partial micelles to multiple preferred binding sites followed by the accretion of surfactant monomers until these partial micelles merge to form a mature micelle and the protein chain is left disordered on the surface of the micelle. While the two surfactants attack in a similar fashion, SHS's longer alkyl chain leads to a more efficient denaturation through the formation of larger clusters that attack ACBP, a more rapid drop in native contacts, a greater expansion in size, as well as a more thorough rearrangement of hydrogen bonds and disruption of helices.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Animais , Bovinos , Micelas , Simulação de Dinâmica Molecular , Desnaturação Proteica/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos
12.
Sci Total Environ ; 613-614: 877-885, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28942321

RESUMO

Radium isotopes (226Ra and 228Ra) were analyzed in 18 groundwater samples from the Nubian Sandstone Aquifer System (NSAS) and the shallow alluvial aquifers overlying the basement complex of the Sinai Peninsula, Egypt. Groundwater samples from deep Nubian aquifer wells (total depths 747 to 1250m) have 226Ra and 228Ra activities ranging from 0.168 to 0.802 and 0.056 to 1.032Bq/L, respectively. The shallower Nubian aquifer wells (63 to 366m) have 226Ra and 228Ra activities ranging from 0.033 to 0.191 and 0.029 to 0.312Bq/L, respectively. The basement shallow alluvial aquifers have 226Ra and 228Ra activities ranging from 0.014 to 0.038 and 0.007 to 0.051Bq/L, respectively. Combined Ra activities in most wells were generally in excess of the US Environmental Protection Agency (EPA), the European Union (EU), and the World Health Organization (WHO) maximum contaminant levels (MCL) for drinking water. Radium in groundwater is produced mainly by decay of parent nuclides in the aquifer solids, and observed activities of dissolved Ra isotopes result from a combination of alpha-recoil, adsorption/desorption, co-precipitation/dissolution processes. The observed correlation between Ra activities and salinity indicates that adsorption/desorption processes may be the dominant factor controlling Ra mobility in Sinai groundwater. Radium activities in central and northern Sinai are generally higher than those in southern Sinai, consistent with a gradual increase in salinity and water-rock interaction with increasing groundwater age. Barite is approximately saturated in the groundwater and may limit maximum dissolved Ra concentration. The results of this study indicate that Sinai groundwater should be used with caution, possibly requiring Ra removal from water produced for domestic and agricultural consumption.

13.
PeerJ ; 6: e5356, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065895

RESUMO

Most experimental studies measuring the effects of climate change on terrestrial C cycling have focused on processes that occur at relatively short time scales (up to a few years). However, climate-soil C interactions are influenced over much longer time scales by bioturbation and soil weathering affecting soil fertility, ecosystem productivity, and C storage. Elevated CO2can increase belowground C inputs and stimulate soil biota, potentially affecting bioturbation, and can decrease soil pH which could accelerate soil weathering rates. To determine whether we could resolve any changes in bioturbation or C storage, we investigated soil profiles collected from ambient and elevated-CO2plots at the Free-Air Carbon-Dioxide Enrichment (FACE) forest site at Oak Ridge National Laboratory after 11 years of 13C-depleted CO2 release. Profiles of organic carbon concentration, δ13C values, and activities of 137Cs, 210Pb, and 226Ra were measured to ∼30 cm depth in replicated soil cores to evaluate the effects of elevated CO2 on these parameters. Bioturbation models based on fitting advection-diffusion equations to 137Cs and 210Pb profiles showed that ambient and elevated-CO2 plots had indistinguishable ranges of apparent biodiffusion constants, advection rates, and soil mixing times, although apparent biodiffusion constants and advection rates were larger for 137Cs than for 210Pb as is generally observed in soils. Temporal changes in profiles of δ13C values of soil organic carbon (SOC) suggest that addition of new SOC at depth was occurring at a faster rate than that implied by the net advection term of the bioturbation model. Ratios of (210Pb/226Ra) may indicate apparent soil mixing cells that are consistent with biological mechanisms, possibly earthworms and root proliferation, driving C addition and the mixing of soil between ∼4 cm and ∼18 cm depth. Burial of SOC by soil mixing processes could substantially increase the net long-term storage of soil C and should be incorporated in soil-atmosphere interaction models.

14.
Phys Rev E ; 96(6-1): 062127, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29347417

RESUMO

The Ising model in two dimensions with special toroidal boundary conditions is analyzed. These boundary conditions, which we call duality-twisted boundary conditions, may be interpreted as inserting a specific defect line ("seam") in the system, along noncontractible circles of the cylinder, before closing it into a torus. We derive exact expressions for the eigenvalues of a transfer matrix for the critical ferromagnetic Ising model on the M×N square lattice wrapped on the torus with a specific defect line. As a result we have obtained analytically the partition function for the Ising model with such boundary conditions. In the case of infinitely long cylinders of circumference L with duality-twisted boundary conditions we obtain the asymptotic expansion of the free energy and the inverse correlation lengths. We find that the ratio of subdominant finite-size correction terms in the asymptotic expansion of the free energy and the inverse correlation lengths should be universal. We verify such universal behavior in the framework of a perturbating conformal approach by calculating the universal structure constant C_{n1n} for descendent states generated by the operator product expansion of the primary fields. For such states the calculations of an universal structure constants is a difficult task, since it involves knowledge of the four-point correlation function, which in general is not fixed by conformal invariance except for some particular cases, including the Ising model.

15.
J Expo Sci Environ Epidemiol ; 26(3): 324-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25805252

RESUMO

Perchlorate (ClO4(-)) is a ubiquitous environmental contaminant with high human exposure potential. Natural perchlorate forms in the atmosphere from where it deposits onto the surface of Earth, whereas synthetic perchlorate is manufactured as an oxidant for industrial, aerospace, and military applications. Perchlorate exposure can potentially cause adverse health effects in humans by interfering with the production of thyroid hormones through competitively blocking iodide uptake. To control and reduce perchlorate exposure, the contributions of different sources of perchlorate exposure need to be quantified. Thus, we demonstrate a novel approach for determining the contribution of different perchlorate exposure sources by quantifying stable and radioactive chlorine isotopes of perchlorate extracted from composite urine samples from two distinct populations: one in Atlanta, USA and one in Taltal, Chile (Atacama region). Urinary perchlorate from the Atlanta region resembles indigenous natural perchlorate from the western USA (δ(37)Cl=+4.1±1.0‰; (36)Cl/Cl=1 811 (±136) × 10(-15)), and urinary perchlorate from the Taltal, Chile region is similar to natural perchlorate in nitrate salt deposits from the Atacama Desert of northern Chile (δ(37)Cl=-11.0±1.0‰; (36)Cl/Cl=254 (±40) × 10(-15)). Neither urinary perchlorate resembled the isotopic pattern found in synthetic perchlorate. These results indicate that natural perchlorate of regional provenance is the dominant exposure source for the two sample populations, and that chlorine isotope ratios provide a robust tool for elucidating perchlorate exposure pathways.


Assuntos
Cloro/química , Exposição Ambiental , Exposição Ocupacional , Percloratos/urina , Humanos
16.
J Environ Radioact ; 144: 62-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25817926

RESUMO

The observed (36)Cl isotopic abundance in Great Lakes water decreases from west to east, with the highest (36)Cl/Cl ratio of 1332 × 10(-15) in Lake Superior and the lowest (36)Cl/Cl ratio of 151 × 10(-15) in Lake Erie, whereas the (36)Cl concentration ((36)Cl atoms/L) is lowest in Lake Superior and higher in the other Great Lakes. The (36)Cl concentration in Lake Superior is much higher than expected from normal atmospheric deposition over the basin, consistent with deposition of nuclear bomb-produced (36)Cl during 1952-1964. A conservative mass-balance model constrained by hydrological parameters and available (36)Cl fluence measurements predicts the (36)Cl abundances in the Great Lakes from 1945 to 2015, in excellent agreement with available data for Lakes Superior, Michigan, and Huron, but the model underestimates (36)Cl abundances for Lakes Erie and Ontario. However, assuming that (36)Cl demonstrates non-conservative behavior and is significantly retained in the drainage basins, a model incorporating a delayed input parameter successfully predicts observed (36)Cl concentrations in all of the Great Lakes.


Assuntos
Cloro/análise , Monitoramento de Radiação , Radioisótopos/análise , Poluentes Radioativos da Água/análise , Great Lakes Region , Espectrometria de Massas
17.
J Colloid Interface Sci ; 358(1): 175-81, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21334633

RESUMO

We have performed a 15 ns molecular dynamics simulation of inverse sodium dodecyl sulfate (SDS) micelles in a mixed toluene/pentanol solvent in the absence and presence of a cationic polyelectrolyte, i.e. poly(diallyldimethylammonium chloride) (PDADMAC). The NAMD code and CHARMM force field were used. During the simulation time, the radii of SDS inverse micelles changed and the radii of the water droplets have been calculated. The behavior of SDS hydrocarbon chains has been characterized by calculating the orientation order parameter and the chain average length. The water droplet properties (water flow, water molecules displacement) have been examined. In summary the MD simulations indicate a more rigid and ordered surfactant film due to the formation of a polyelectrolyte palisade layer in full agreement with the experimental findings, e.g. the viscosity increase and shift of the percolation boundary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA