Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mod Pathol ; 35(11): 1529-1539, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35840720

RESUMO

Assessment of programmed death ligand 1 (PD-L1) expression by immunohistochemistry (IHC) has emerged as an important predictive biomarker across multiple tumor types. However, manual quantitation of PD-L1 positivity can be difficult and leads to substantial inter-observer variability. Although the development of artificial intelligence (AI) algorithms may mitigate some of the challenges associated with manual assessment and improve the accuracy of PD-L1 expression scoring, use of AI-based approaches to oncology biomarker scoring and drug development has been sparse, primarily due to the lack of large-scale clinical validation studies across multiple cohorts and tumor types. We developed AI-powered algorithms to evaluate PD-L1 expression on tumor cells by IHC and compared it with manual IHC scoring in urothelial carcinoma, non-small cell lung cancer, melanoma, and squamous cell carcinoma of the head and neck (prospectively determined during the phase II and III CheckMate clinical trials). 1,746 slides were retrospectively analyzed, the largest investigation of digital pathology algorithms on clinical trial datasets performed to date. AI-powered quantification of PD-L1 expression on tumor cells identified more PD-L1-positive samples compared with manual scoring at cutoffs of ≥1% and ≥5% in most tumor types. Additionally, similar improvements in response and survival were observed in patients identified as PD-L1-positive compared with PD-L1-negative using both AI-powered and manual methods, while improved associations with survival were observed in patients with certain tumor types identified as PD-L1-positive using AI-powered scoring only. Our study demonstrates the potential for implementation of digital pathology-based methods in future clinical practice to identify more patients who would benefit from treatment with immuno-oncology therapy compared with current guidelines using manual assessment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células de Transição , Neoplasias Pulmonares , Neoplasias da Bexiga Urinária , Humanos , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Nivolumabe/uso terapêutico , Ipilimumab , Inteligência Artificial , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Anticorpos Monoclonais/uso terapêutico , Biomarcadores Tumorais/metabolismo
2.
Hepatology ; 74(6): 3146-3160, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34333790

RESUMO

BACKGROUND AND AIMS: The hepatic venous pressure gradient (HVPG) is the standard for estimating portal pressure but requires expertise for interpretation. We hypothesized that HVPG could be extrapolated from liver histology using a machine learning (ML) algorithm. APPROACH AND RESULTS: Patients with NASH with compensated cirrhosis from a phase 2b trial were included. HVPG and biopsies from baseline and weeks 48 and 96 were reviewed centrally, and biopsies evaluated with a convolutional neural network (PathAI, Boston, MA). Using trichrome-stained biopsies in the training set (n = 130), an ML model was developed to recognize fibrosis patterns associated with HVPG, and the resultant ML HVPG score was validated in a held-out test set (n = 88). Associations between the ML HVPG score with measured HVPG and liver-related events, and performance of the ML HVPG score for clinically significant portal hypertension (CSPH) (HVPG ≥ 10 mm Hg), were determined. The ML-HVPG score was more strongly correlated with HVPG than hepatic collagen by morphometry (ρ = 0.47 vs. ρ = 0.28; P < 0.001). The ML HVPG score differentiated patients with normal (0-5 mm Hg) and elevated (5.5-9.5 mm Hg) HVPG and CSPH (median: 1.51 vs. 1.93 vs. 2.60; all P < 0.05). The areas under receiver operating characteristic curve (AUROCs) (95% CI) of the ML-HVPG score for CSPH were 0.85 (0.80, 0.90) and 0.76 (0.68, 0.85) in the training and test sets, respectively. Discrimination of the ML-HVPG score for CSPH improved with the addition of a ML parameter for nodularity, Enhanced Liver Fibrosis, platelets, aspartate aminotransferase (AST), and bilirubin (AUROC in test set: 0.85; 95% CI: 0.78, 0.92). Although baseline ML-HVPG score was not prognostic, changes were predictive of clinical events (HR: 2.13; 95% CI: 1.26, 3.59) and associated with hemodynamic response and fibrosis improvement. CONCLUSIONS: An ML model based on trichrome-stained liver biopsy slides can predict CSPH in patients with NASH with cirrhosis.


Assuntos
Hipertensão Portal/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Cirrose Hepática/complicações , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Biópsia , Ensaios Clínicos Fase II como Assunto , Diagnóstico Diferencial , Feminino , Humanos , Hipertensão Portal/etiologia , Cirrose Hepática/patologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , Pressão na Veia Porta , Prognóstico , Curva ROC , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Hepatology ; 74(1): 133-147, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33570776

RESUMO

BACKGROUND AND AIMS: Manual histological assessment is currently the accepted standard for diagnosing and monitoring disease progression in NASH, but is limited by variability in interpretation and insensitivity to change. Thus, there is a critical need for improved tools to assess liver pathology in order to risk stratify NASH patients and monitor treatment response. APPROACH AND RESULTS: Here, we describe a machine learning (ML)-based approach to liver histology assessment, which accurately characterizes disease severity and heterogeneity, and sensitively quantifies treatment response in NASH. We use samples from three randomized controlled trials to build and then validate deep convolutional neural networks to measure key histological features in NASH, including steatosis, inflammation, hepatocellular ballooning, and fibrosis. The ML-based predictions showed strong correlations with expert pathologists and were prognostic of progression to cirrhosis and liver-related clinical events. We developed a heterogeneity-sensitive metric of fibrosis response, the Deep Learning Treatment Assessment Liver Fibrosis score, which measured antifibrotic treatment effects that went undetected by manual pathological staging and was concordant with histological disease progression. CONCLUSIONS: Our ML method has shown reproducibility and sensitivity and was prognostic for disease progression, demonstrating the power of ML to advance our understanding of disease heterogeneity in NASH, risk stratify affected patients, and facilitate the development of therapies.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Cirrose Hepática/diagnóstico , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Biópsia , Humanos , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
4.
Nat Med ; 30(10): 2914-2923, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39112795

RESUMO

Clinical trials in metabolic dysfunction-associated steatohepatitis (MASH, formerly known as nonalcoholic steatohepatitis) require histologic scoring for assessment of inclusion criteria and endpoints. However, variability in interpretation has impacted clinical trial outcomes. We developed an artificial intelligence-based measurement (AIM) tool for scoring MASH histology (AIM-MASH). AIM-MASH predictions for MASH Clinical Research Network necroinflammation grades and fibrosis stages were reproducible (κ = 1) and aligned with expert pathologist consensus scores (κ = 0.62-0.74). The AIM-MASH versus consensus agreements were comparable to average pathologists for MASH Clinical Research Network scores (82% versus 81%) and fibrosis (97% versus 96%). Continuous scores produced by AIM-MASH for key histological features of MASH correlated with mean pathologist scores and noninvasive biomarkers and strongly predicted progression-free survival in patients with stage 3 (P < 0.0001) and stage 4 (P = 0.03) fibrosis. In a retrospective analysis of the ATLAS trial (NCT03449446), responders receiving study treatment showed a greater continuous change in fibrosis compared with placebo (P = 0.02). Overall, these results suggest that AIM-MASH may assist pathologists in histologic review of MASH clinical trials, reducing inter-rater variability on trial outcomes and offering a more sensitive and reproducible measure of patient responses.


Assuntos
Inteligência Artificial , Ensaios Clínicos como Assunto , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Cirrose Hepática/patologia , Seleção de Pacientes , Determinação de Ponto Final , Feminino , Estudos Retrospectivos , Masculino , Automação , Hepatopatias/patologia , Reprodutibilidade dos Testes
5.
medRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37162870

RESUMO

Clinical trials in nonalcoholic steatohepatitis (NASH) require histologic scoring for assessment of inclusion criteria and endpoints. However, guidelines for scoring key features have led to variability in interpretation, impacting clinical trial outcomes. We developed an artificial intelligence (AI)-based measurement (AIM) tool for scoring NASH histology (AIM-NASH). AIM-NASH predictions for NASH Clinical Research Network (CRN) grades of necroinflammation and stages of fibrosis aligned with expert consensus scores and were reproducible. Continuous scores produced by AIM-NASH for key histological features of NASH correlated with mean pathologist scores and with noninvasive biomarkers and strongly predicted patient outcomes. In a retrospective analysis of the ATLAS trial, previously unmet pathological endpoints were met when scored by the AIM-NASH algorithm alone. Overall, these results suggest that AIM-NASH may assist pathologists in histologic review of NASH clinical trials, reducing inter-rater variability on trial outcomes and offering a more sensitive and reproducible measure of patient therapeutic response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA