Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Res ; 1773: 147704, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34744014

RESUMO

Among the most studied diseases that affect the central nervous system are Parkinson's, Alzheimer's, and Huntington's diseases, but the lack of effective biomarkers, accurate diagnosis, and precise treatment for each of them is currently an issue. Due to the contribution of biomarkers in supporting diagnosis, many recent efforts have focused on their identification and validation at the beginning or during the progression of the mental illness. Metabolome reveals the metabolic processes that result from protein activities under the guided gene expression and environmental factors, either in healthy or pathological conditions. In this context, metabolomics has proven to be a valuable approach. Currently, magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) are the most commonly used bioanalytical techniques for metabolomics. MS-assisted profiling is considered the most versatile technique, and the NMR is the most reproductive. However, each one of them has its drawbacks. In this review, we summarized several alterations in metabolites that have been reported for these three classic brain diseases using MS and NMR-based research, which might suggest some possible biomarkers to support the diagnosis and/or new targets for their treatment.


Assuntos
Encéfalo/metabolismo , Metaboloma , Doenças Neurodegenerativas/metabolismo , Biomarcadores/metabolismo , Encéfalo/patologia , Humanos , Metabolômica , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia
2.
RSC Adv ; 11(48): 29976-29985, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35480269

RESUMO

The exponential growth of plastic consumption in the last decade became a large economic and ecological issue; therefore, strategies have been used to mitigate the environmental impacts, including the manufacture of biodegradable bio-based plastics and biodegradation strategies. Herein, a new bio-based plastic was developed consisting of a polymeric recyclable matrix (polyethylene or polypropylene) with a vegetal polymeric material from cocoa husk. Mechanical and rheological properties were evaluated and the new material showed interesting tensile strength compared to completely non-biodegradable plastics. The new polymeric material was submitted to biodegradation processes using different fungi species. The biodegradation caused by Colletotrichum gloeosporioides, Xylaria sp. and Fusarium graminearum in the new polymeric material was analyzed through scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) and tensile tests. Furthermore, ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) and mass spectrometry imaging (MSI) were applied to identify metabolites produced in consequence to the biodegradation process. Interestingly, some compounds produced present high economic value.

3.
J Agric Food Chem ; 68(29): 7555-7570, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32559375

RESUMO

Phytopathogens are responsible for great losses in agriculture, once they are able to subvert or elude the host defense mechanisms through virulence factors secretion for their dissemination. Herein, it is reviewed phytotoxins that act as virulence factors and are produced by bacterial phytopathogens (Candidatus Liberibacter spp., Erwinia amylovora, Pseudomonas syringae pvs and Xanthomonas spp.) and fungi (Alternaria alternata, Botrytis cinerea, Cochliobolus spp., Fusarium spp., Magnaporthe spp., and Penicillium spp.), which were selected in accordance to their worldwide importance due to the biochemical and economical aspects. In the current review, it is sought to understand the role of virulence factors in the pathogen-host interactions that result in plant diseases.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Doenças das Plantas/microbiologia , Fatores de Virulência/metabolismo , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas Fúngicas/genética , Fungos/genética , Interações Hospedeiro-Patógeno , Fatores de Virulência/genética
4.
mBio ; 11(5)2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051372

RESUMO

G-protein coupled receptors (GPCRs) are extracellular signaling receptors that sense environmental cues. Fungi sense their environment primarily through GPCR-mediated signaling pathways, which, in turn, regulate fungal development, metabolism, virulence, and mycotoxin biosynthesis. Aspergillus fumigatus is an important human pathogen that causes aspergillosis, a heterogeneous group of diseases that present a wide range of clinical manifestations. Here, we investigate in detail the role of the GPCRs GprM and GprJ in growth and gene expression. GprM and GprJ are important for melanin production and the regulation of the cell wall integrity (CWI) pathway. Overexpression of gprM and gprJ causes a 20 and 50% reduction in growth rate compared to the wild-type (WT) strain and increases sensitivity to cell wall-damaging agents. Phosphorylation of the CWI protein kinase MpkA is increased in the ΔgprM and ΔgprJ strains and decreased in the overexpression mutants compared to the WT strain. Furthermore, differences in cell wall polysaccharide concentrations and organization were observed in these strains. Transcriptome sequencing suggests that GprM and GprJ negatively regulate genes encoding secondary metabolites (SMs). Mass spectrometry analysis confirmed that the production of fumagillin, pyripyropene, fumigaclavine C, fumiquinazoline, and fumitremorgin is reduced in the ΔgprM and ΔgprJ strains, at least partially through the activation of MpkA. Overexpression of grpM also resulted in the regulation of many transcription factors, with AsgA predicted to function downstream of GprM and MpkA signaling. Finally, we show that the ΔgprM and ΔgprJ mutants are reduced in virulence in the Galleria mellonella insect model of invasive aspergillosis.IMPORTANCEA. fumigatus is the main etiological agent of invasive pulmonary aspergillosis, a life-threatening fungal disease that occurs in severely immunocompromised humans. Withstanding the host environment is essential for A. fumigatus virulence, and sensing of extracellular cues occurs primarily through G-protein coupled receptors (GPCRs) that activate signal transduction pathways, which, in turn, regulate fungal development, metabolism, virulence, and mycotoxin biosynthesis. The A. fumigatus genome encodes 15 putative classical GPCRs, with only three having been functionally characterized to date. In this work, we show that the two GPCRs GprM and GprJ regulate the phosphorylation of the mitogen-activated protein kinase MpkA and thus control the regulation of the cell wall integrity pathway. GprM and GprJ are also involved in the regulation of the production of the secondary metabolites fumagillin, pyripyropene, fumigaclavine C, fumiquinazoline, melanin, and fumitremorgin, and this regulation partially occurs through the activation of MpkA. Furthermore, GprM and GprJ are important for virulence in the insect model Galleria mellonella This work therefore functionally characterizes two GPCRs and shows how they regulate several intracellular pathways that have been shown to be crucial for A. fumigatus virulence.


Assuntos
Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Receptores Acoplados a Proteínas G/genética , Metabolismo Secundário , Animais , Aspergillus fumigatus/química , Regulação Fúngica da Expressão Gênica , Larva/microbiologia , Macrófagos/microbiologia , Masculino , Melaninas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mariposas/microbiologia , Fagocitose , Fosforilação , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Toxins (Basel) ; 11(8)2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390769

RESUMO

Citrus are vulnerable to the postharvest decay caused by Penicillium digitatum, Penicillium italicum, and Geotrichum citri-aurantii, which are responsible for the green mold, blue mold, and sour rot post-harvest disease, respectively. The widespread economic losses in citriculture caused by these phytopathogens are minimized with the use of synthetic fungicides such as imazalil, thiabendazole, pyrimethanil, and fludioxonil, which are mainly employed as control agents and may have harmful effects on human health and environment. To date, numerous non-chemical postharvest treatments have been investigated for the control of these pathogens. Several studies demonstrated that biological control using microbial antagonists and natural products can be effective in controlling postharvest diseases in citrus, as well as the most used commercial fungicides. Therefore, microbial agents represent a considerably safer and low toxicity alternative to synthetic fungicides. In the present review, these biological control strategies as alternative to the chemical fungicides are summarized here and new challenges regarding the development of shelf-stable formulated biocontrol products are also discussed.


Assuntos
Citrus/microbiologia , Geotrichum/efeitos dos fármacos , Penicillium/efeitos dos fármacos , Controle Biológico de Vetores , Fungicidas Industriais/farmacologia , Geotrichum/isolamento & purificação , Penicillium/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA