Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Langmuir ; 40(2): 1232-1246, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38176061

RESUMO

Electrostatic interaction of ampholytic nanocolloidal particles (NPs), which mimic globular proteins, with polyelectrolyte brushes is analyzed within mean-field Poisson-Boltzmann approximation. In accordance with experimental findings, the theory predicts that an electrostatic driving force for the particle uptake by the brush may emerge when the net charge of the particle in the buffer and the charge of the brush are of the same sign. The origin of this driving force is change in the ionization state of weak cationic and anionic groups on the NP surface provoked by interaction with the brush. In experimental systems, the ionic interactions are complemented by excluded-volume, hydrophobic, and other types of interactions that all together control NP uptake by or expulsion from the brush. Here, we focus on the NP-brush ionic interactions. It is demonstrated that deviation between the buffer pH and the NP isoelectric point, considered usually as the key control parameter, does not uniquely determine the insertion free energy patterns. The latter depends also on the proportion of cationic and anionic groups in the NPs and their specific ionization constants as well as on salt concentration in the buffer. The analysis of the free energy landscape proves that a local minimum in the free energy inside the brush appears, provided the NP charge reversal occurs upon insertion into the brush. This minimum corresponds either to a thermodynamically stable or to a metastable state, depending on the pH offset from the IEP and salt concentration, and is separated from the bulk of the solution by a free energy barrier. The latter, being fairly independent of salt concentration in height, may strongly impede the NP absorption kinetically even when it is thermodynamically favorable. Hence, change reversal is a necessary but insufficient condition for the uptake of the NPs by similarly charged polyelectrolyte brushes.

3.
Biomimetics (Basel) ; 8(8)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38132536

RESUMO

A large number of experimental studies have demonstrated that globular proteins can be absorbed from the solution by both polycationic and polyanionic brushes when the net charge of protein globules is of the same or of the opposite sign with respect to that of brush-forming polyelectrolyte chains. Here, we overview the results of experimental studies on interactions between globular proteins and polycationic or polyanionic brushes, and present a self-consistent field theoretical model that allows us to account for the asymmetry of interactions of protein-like nanocolloid particles comprising weak (pH-sensitive) cationic and anionic groups with a positively or negatively charged polyelectrolyte brush. The position-dependent insertion free energy and the net charge of the particle are calculated. The theoretical model predicts that if the numbers of cationic and anionic ionizable groups of the protein are approximately equal, then the interaction patterns for both cationic and anionic brushes at equal offset on the "wrong side" from the isoelectric point (IEP), i.e., when the particle and the brush charge are of the same sign, are similar. An essential asymmetry in interactions of particles with polycationic and polyanionic brushes is predicted when fractions of cationic and anionic groups differ significantly. That is, at a pH above IEP, the anionic brush better absorbs negatively charged particles with a larger fraction of ionizable cationic groups and vice versa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA