RESUMO
Myosin-X (MYO10), a molecular motor localizing to filopodia, is thought to transport various cargo to filopodia tips, modulating filopodia function. However, only a few MYO10 cargoes have been described. Here, using GFP-Trap and BioID approaches combined with mass spectrometry, we identified lamellipodin (RAPH1) as a novel MYO10 cargo. We report that the FERM domain of MYO10 is required for RAPH1 localization and accumulation at filopodia tips. Previous studies have mapped the RAPH1 interaction domain for adhesome components to its talin-binding and Ras-association domains. Surprisingly, we find that the RAPH1 MYO10-binding site is not within these domains. Instead, it comprises a conserved helix located just after the RAPH1 pleckstrin homology domain with previously unknown functions. Functionally, RAPH1 supports MYO10 filopodia formation and stability but is not required to activate integrins at filopodia tips. Taken together, our data indicate a feed-forward mechanism whereby MYO10 filopodia are positively regulated by MYO10-mediated transport of RAPH1 to the filopodium tip.
Assuntos
Integrinas , Pseudópodes , Sítios de Ligação , Espectrometria de Massas , Miosinas/genéticaRESUMO
In this review, we summarize the current state of knowledge on the fat mass and obesity-associated (FTO) gene and its role in obesity. The FTO-encoded protein is involved in multiple molecular pathways contributing to obesity as well as other metabolic complexities. This review emphasizes the epigenetic influence on the FTO gene as a new approach in the treatment and management of obesity. Several known substances have a positive effect on reducing FTO expression. Depending on which variant of the single nucleotide polymorphism (SNP) is present, the profile and level of gene expression changes. Implementation of environmental change measures could lead to reduced phenotypic manifestation of FTO expression. Treating obesity through FTO gene regulation will have to include various complex signal pathways in which FTO takes part. Identification of FTO gene polymorphisms may be useful for the development of individual obesity management strategies, including the recommendation of taking certain foods and supplements.
RESUMO
The aim of the study was to examine the immunomodulatory effect of crude Chelidonium majus L ethanolic extract on ex vivo harvested peripheral blood mononuclear cells (PBMNCs). PBMNCs were isolated by density gradient centrifugation. The PBMNC cytotoxicity assay was performed with HeLa tumor cells as target cells. MTT assay was used to estimate the proliferation effect of extract and cytotoxic efficiency of treated PBMNCs. Flow cytometric analysis was used for immunophenotyping. Treatment induced moderate proliferative response, perturbation in PBMNC ratios, and the emergence of some unconventional subpopulations. The percentage ratio of double positive CD4+ and CD8+ T lymphocytes and monocytes, ratio of T and B lymphocytes expressing CD14, and percentage of NK cells expressing CD57 increased after treatment, indicating activation of PBMNC subpopulations. Cytotoxic activity against HeLa cells was enhanced. Activation of PBMNCs and enhancement of their cytotoxic effect toward HeLa cells indicate the immunostimulatory effect of Ch. majus ethanolic extract.
Assuntos
Chelidonium , Células HeLa , Humanos , Leucócitos Mononucleares , Extratos Vegetais/farmacologiaRESUMO
Acetylshikonin (AcSh), as a red colored pigment found in roots of the plants from family Boraginaceae, showed excellent cytotoxic activity. Due to its hydrophobic nature, and thus poor bioavailability, the aim of this study was to prepare acetylshikonin/ß-cyclodextrin (AcSh/ß-CD) inclusion complex by using coprecipitation method, characterize obtained system by using UV/VIS, IR and 1H NMR spectroscopy, and determine cytotoxic activity. Phase solubility test indicated formation of AL-type binary system (substrate/ligand ratio was 1:1 M/M), with stability constant Ks of 306.01 M-1. Formation of noncovalent bonds between inner layer of the hole of ß-CD and AcSh was observed using spectroscopic methods. Notable changes in chemical shifts of two protons (-0.020 ppm) from naphthoquinone moiety (C6-H and C7-H), as well as protons from hydroxyl groups (-0.013 and -0.009, respectively) attached to C5 and C8 carbons from naphthoquinone part indicate that the molecule of AcSh enters the ß-CD cavity from the aromatic side. Cytotoxic activity against HCT-116 and MDA-MB-231 cell lines was measured by MTT test and clonogenic assay. Mechanisms of action of free AcSh and inclusion complex were assessed by flow cytometry. In comparison to free AcSh, AcSh/ß-CD showed stronger short-term effect on HCT-116 cells and superior long-term effect on both cell lines. Inclusion complex induced more pronounced cell cycle arrest and autophagy inhibition, and induced increase in accumulation of intracellular ROS more effectively than free AcSh. In conclusion, AcSh/ß-CD binary system showed better performances regarding cytotoxic activity against tested tumor cell lines.
RESUMO
The continuous growth of global plastics production, including polyesters, has resulted in increasing plastic pollution and subsequent negative environmental impacts. Therefore, enzyme-catalyzed depolymerization of synthetic polyesters as a plastics recycling approach has become a focus of research. In this study, we screened over 200 purified uncharacterized hydrolases from environmental metagenomes and sequenced microbial genomes and identified at least 10 proteins with high hydrolytic activity against synthetic polyesters. These include the metagenomic esterases MGS0156 and GEN0105, which hydrolyzed polylactic acid (PLA), polycaprolactone, as well as bis(benzoyloxyethyl)-terephthalate. With solid PLA as a substrate, both enzymes produced a mixture of lactic acid monomers, dimers, and higher oligomers as products. The crystal structure of MGS0156 was determined at 1.95 Å resolution and revealed a modified α/ß hydrolase fold, with a lid domain and highly hydrophobic active site. Mutational studies of MGS0156 identified the residues critical for hydrolytic activity against both polyester and monoester substrates, with two-times higher polyesterase activity in the MGS0156 L169A mutant protein. Thus, our work identified novel, highly active polyesterases in environmental metagenomes and provided molecular insights into their activity, thereby augmenting our understanding of enzymatic polyester hydrolysis.
Assuntos
Metagenoma , Poliésteres , Esterases , Hidrolases , HidróliseRESUMO
BACKGROUND: Various mechanisms, including somatic and visceral nociceptive stimulation, have been suggested as a cause for pain after laparoscopic cholecystectomy (LC). We therefore conducted a prospective randomized controlled trial (PRCT) to evaluate whether somatovisceral pain blockade reduces pain after LC. HYPOTHESIS: Analgesic efficacy of multimodal analgesia is superior to standard analgesia for patients undergoing elective LC for symptomatic cholelithiasis. Specifically, topical cystic plate and port-site injection with 0.25 % bupivacaine significantly reduces pain after LC. DESIGN: This study was designed as single-blinded PRCT. SETTING: This study was conducted in an academic medical center. PATIENTS AND METHODS: Between February and May 2010 we randomly assigned 63 patients with symptomatic cholelithiasis in a 1:1 ratio to non-opioid/opioid analgesic combinations (Control Group, n = 32) and non-opioid/opioid analgesic combinations plus topical 0.25 % bupivacaine onto the cystic plate and local 0.25 % bupivacaine port-site injection, post-LC (Study Group, n = 31). Primary endpoint was patient-reported pain 1, 4, 6, 12, 24 h and 1 week post-LC using the Visual Analog Scale (VAS 0-10). RESULTS: Study groups were comparable clinicopathologically. There were no adverse events. A statistically significant reduction in mean pain score was apparent in Study Group patients in comparison with Control Group (mean VAS 4.83 ± 2.33 vs. 6.80 ± 1.87; p < 0.001) at all early (1-6 h) post-operative time points following LC. CONCLUSION: This PRCT shows significantly improved pain control with somatovisceral pain blockade over non-opioid/opioid analgesic combinations following LC for symptomatic cholelithiasis. For centers not utilizing adjunctive local anesthetic for LC, this topical use of bupivacaine may improve patient comfort during recovery. This trial was registered on www.ClinicalTrials.gov NCT# 01972620.
Assuntos
Analgésicos/uso terapêutico , Anestésicos Locais/uso terapêutico , Bupivacaína/uso terapêutico , Colecistectomia Laparoscópica/métodos , Colelitíase/cirurgia , Dor Pós-Operatória/prevenção & controle , Adulto , Idoso , Anestesia Local , Diclofenaco/uso terapêutico , Dipirona/uso terapêutico , Método Duplo-Cego , Procedimentos Cirúrgicos Eletivos , Feminino , Humanos , Injeções Intraperitoneais , Cetorolaco/uso terapêutico , Masculino , Pessoa de Meia-Idade , Manejo da Dor , Medição da Dor , Dor Pós-Operatória/tratamento farmacológico , Estudos Prospectivos , Método Simples-Cego , Escala Visual Analógica , Adulto JovemRESUMO
Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated Cas proteins comprise a prokaryotic RNA-guided adaptive immune system that interferes with mobile genetic elements, such as plasmids and phages. The type I-E CRISPR interference complex Cascade from Escherichia coli is composed of five different Cas proteins and a 61-nt-long guide RNA (crRNA). crRNAs contain a unique 32-nt spacer flanked by a repeat-derived 5' handle (8 nt) and a 3' handle (21 nt). The spacer part of crRNA directs Cascade to DNA targets. Here, we show that the E. coli Cascade can be expressed and purified from cells lacking crRNAs and loaded in vitro with synthetic crRNAs, which direct it to targets complementary to crRNA spacer. The deletion of even one nucleotide from the crRNA 5' handle disrupted its binding to Cascade and target DNA recognition. In contrast, crRNA variants with just a single nucleotide downstream of the spacer part bound Cascade and the resulting ribonucleotide complex containing a 41-nt-long crRNA specifically recognized DNA targets. Thus, the E. coli Cascade-crRNA system exhibits significant flexibility suggesting that this complex can be engineered for applications in genome editing and opening the way for incorporation of site-specific labels in crRNA.
Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Associadas a CRISPR/isolamento & purificação , Proteínas de Escherichia coli/isolamento & purificação , Ligação Proteica , RNA Guia de Cinetoplastídeos/químicaRESUMO
OBJECTIVE: Clinical trials demonstrated that ketamine exhibits rapid antidepressant efficacy when administered in subanaesthetic dosages. We reviewed currently available literature investigating efficacy, response rates and safety profile. METHODS: Twelve studies investigating unipolar, seven on bipolar depression were included after search in medline, scopus and web of science. RESULTS: Randomized, placebo-controlled or open-label trials reported antidepressant response rates after 24 h on primary outcome measures at 61%. The average reduction of Hamilton Depression Rating Scale (HAM-D) was 10.9 points, Beck Depression Inventory (BDI) 15.7 points and Montgomery-Asberg Depression Rating Scale (MADRS) 20.8 points. Ketamine was always superior to placebo. Most common side effects were dizziness, blurred vision, restlessness, nausea/vomiting and headache, which were all reversible. Relapse rates ranged between 60% and 92%. To provide best practice-based information to patients, a consent-form for application and modification in local language is included. CONCLUSIONS: Ketamine constitutes a novel, rapid and efficacious treatment option for patients suffering from treatment resistant depression and exhibits rapid and significant anti-suicidal effects. New administration routes might serve as alternative to intravenous regimes for potential usage in outpatient settings. However, long-term side effects are not known and short duration of antidepressant response need ways to prolong ketamine's efficacy.
Assuntos
Transtorno Bipolar/tratamento farmacológico , Transtorno Depressivo/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/efeitos adversos , Humanos , Ketamina/administração & dosagem , Ketamina/efeitos adversosRESUMO
Hippocampal volume loss has been related to chronic stress as well as genetic factors. Although genetic and environmental variables affecting hippocampal volume have extensively been studied and related to mental illness, limited evidence is available with respect to G × E interactions on hippocampal volume. The present MRI study investigated interaction effects on hippocampal volume between three well-studied functional genetic variants (COMT Val158Met, BDNF Val66Met, 5-HTTLPR) associated with hippocampal volume and a measure of environmental adversity (life events questionnaire) in a large sample of healthy humans (n = 153). All three variants showed significant interactions with environmental adversity with respect to hippocampal volume. Observed effects were additive by nature and driven by both recent as well as early life events. A consecutive analysis of hippocampal subfields revealed a spatially distinct profile for each genetic variant suggesting a specific role of 5-HTTLPR for the subiculum, BDNF Val66Met for CA4/dentate gyrus, and COMT Val158Met for CA2/3 volume changes. The present study underscores the importance of G × E interactions as determinants of hippocampal volume, which is crucial for the neurobiological understanding of stress-related conditions, such as mood disorders or post-traumatic stress disorder (PTSD).
Assuntos
Interação Gene-Ambiente , Nível de Saúde , Hipocampo/fisiologia , Acontecimentos que Mudam a Vida , Adolescente , Adulto , Feminino , Hipocampo/patologia , Humanos , Masculino , Tamanho do Órgão/fisiologia , Adulto JovemRESUMO
The shrimp Rimicaris exoculata dominates the fauna in deep-sea hydrothermal vent sites along the Mid-Atlantic Ridge (depth, 2,320 m). Here, we identified and biochemically characterized three carboxyl esterases from microbial communities inhabiting the R. exoculata gill that were isolated by naive screens of a gill chamber metagenomic library. These proteins exhibit low to moderate identity to known esterase sequences (≤52%) and to each other (11.9 to 63.7%) and appear to have originated from unknown species or from genera of Proteobacteria related to Thiothrix/Leucothrix (MGS-RG1/RG2) and to the Rhodobacteraceae group (MGS-RG3). A library of 131 esters and 31 additional esterase/lipase preparations was used to evaluate the activity profiles of these enzymes. All 3 of these enzymes had greater esterase than lipase activity and exhibited specific activities with ester substrates (≤356 U mg(-1)) in the range of similar enzymes. MGS-RG3 was inhibited by salts and pressure and had a low optimal temperature (30°C), and its substrate profile clustered within a group of low-activity and substrate-restricted marine enzymes. In contrast, MGS-RG1 and MGS-RG2 were most active at 45 to 50°C and were salt activated and barotolerant. They also exhibited wider substrate profiles that were close to those of highly active promiscuous enzymes from a marine hydrothermal vent (MGS-RG2) and from a cold brackish lake (MGS-RG1). The data presented are discussed in the context of promoting the examination of enzyme activities of taxa found in habitats that have been neglected for enzyme prospecting; the enzymes found in these taxa may reflect distinct habitat-specific adaptations and may constitute new sources of rare reaction specificities.
Assuntos
Hidrolases de Éster Carboxílico/isolamento & purificação , Decápodes/microbiologia , Brânquias/microbiologia , Metagenoma , Microbiota , Animais , Oceano Atlântico , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Ativadores de Enzimas/metabolismo , Inibidores Enzimáticos/metabolismo , Estabilidade Enzimática , Fontes Hidrotermais , Metagenômica , Dados de Sequência Molecular , Sais/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , TemperaturaRESUMO
Most of the Earth's biosphere is cold and is populated by cold-adapted microorganisms. To explore the natural enzyme diversity of these environments and identify new carboxylesterases, we have screened three marine metagenome gene libraries for esterase activity. The screens identified 23 unique active clones, from which five highly active esterases were selected for biochemical characterization. The purified metagenomic esterases exhibited high activity against α-naphthyl and p-nitrophenyl esters with different chain lengths. All five esterases retained high activity at 5 °C indicating that they are cold-adapted enzymes. The activity of MGS0010 increased more than two times in the presence of up to 3.5 M NaCl or KCl, whereas the other four metagenomic esterases were inhibited to various degrees by these salts. The purified enzymes showed different sensitivities to inhibition by solvents and detergents, and the activities of MGS0010, MGS0105 and MGS0109 were stimulated three to five times by the addition of glycerol. Screening of purified esterases against 89 monoester substrates revealed broad substrate profiles with a preference for different esters. The metagenomic esterases also hydrolyzed several polyester substrates including polylactic acid suggesting that they can be used for polyester depolymerization. Thus, esterases from marine metagenomes are cold-adapted enzymes exhibiting broad biochemical diversity reflecting the environmental conditions where they evolved.
Assuntos
Organismos Aquáticos/enzimologia , Hidrolases de Éster Carboxílico/isolamento & purificação , Hidrolases de Éster Carboxílico/metabolismo , Temperatura Baixa , Metagenoma , Organismos Aquáticos/genética , Hidrolases de Éster Carboxílico/genética , Ativadores de Enzimas/metabolismo , Dados de Sequência Molecular , Cloreto de Potássio/metabolismo , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Especificidade por SubstratoRESUMO
This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.
Assuntos
Metagenoma , Metagenômica/métodos , Esterases/isolamento & purificação , Biblioteca Gênica , Lipase/isolamento & purificação , Peptídeo Hidrolases/isolamento & purificaçãoRESUMO
The human HD domain protein SAMHD1 is implicated in the Aicardi-Goutières autoimmune syndrome and in the restriction of HIV-1 replication in myeloid cells. Recently, this protein has been shown to possess dNTP triphosphatase activity, which is proposed to inhibit HIV-1 replication and the autoimmune response by hydrolyzing cellular dNTPs. Here, we show that the purified full-length human SAMHD1 protein also possesses metal-dependent 3'â5' exonuclease activity against single-stranded DNAs and RNAs in vitro. In double-stranded substrates, this protein preferentially cleaved 3'-overhangs and RNA in blunt-ended DNA/RNA duplexes. Full-length SAMHD1 also exhibited strong DNA and RNA binding to substrates with complex secondary structures. Both nuclease and dNTP triphosphatase activities of SAMHD1 are associated with its HD domain, but the SAM domain is required for maximal activity and nucleic acid binding. The nuclease activity of SAMHD1 could represent an additional mechanism contributing to HIV-1 restriction and suppression of the autoimmune response through direct cleavage of viral and endogenous nucleic acids. In addition, we demonstrated the presence of dGTP triphosphohydrolase and nuclease activities in several microbial HD domain proteins, suggesting that these proteins might contribute to antiviral defense in prokaryotes.
Assuntos
Doenças Autoimunes do Sistema Nervoso/enzimologia , Exonucleases/fisiologia , HIV-1/fisiologia , Proteínas Monoméricas de Ligação ao GTP/química , Malformações do Sistema Nervoso/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Clivagem do DNA , DNA de Cadeia Simples/química , Humanos , Hidrólise , Magnésio/química , Anotação de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/genética , Mutagênese Sítio-Dirigida , Ligação Proteica , RNA/química , Clivagem do RNA , RNA Viral/química , Proteína 1 com Domínio SAM e Domínio HD , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genéticaRESUMO
Biofortification aims to increase selenium (Se) concentration and bioavailability in edible parts of crops such as wheat (Triticum aestivum L.), resulting in increased concentration of Se in plants and/or soil. Higher Se concentrations can disturb protein structure and consequently influence glutathione (GSH) metabolism in plants which can affect antioxidative and other detoxification pathways. The aim of this study was to elucidate the impact of five different concentrations of selenate and selenite (0.4, 4, 20, 40 and 400 mg kg-1) on the ascorbate-glutathione cycle in wheat shoots and roots and to determine biochemical and molecular tissue-specific responses. Content of investigated metabolites, activities of detoxification enzymes and expression of their genes depended both on the chemical form and concentration of the applied Se, as well as on the type of plant tissue. The most pronounced changes in the expression level of genes involved in GSH metabolism were visible in wheat shoots at the highest concentrations of both forms of Se. Obtained results can serve as a basis for further research on Se toxicity and detoxification mechanisms in wheat. New insights into the Se impact on GSH metabolism could contribute to the further development of biofortification strategies.
Assuntos
Selênio , Selênio/farmacologia , Selênio/metabolismo , Triticum/metabolismo , Plântula/metabolismo , Ácido Selênico/metabolismo , Ácido Selenioso/metabolismo , Glutationa/metabolismoRESUMO
Commensal protists and gut bacterial communities exhibit complex relationships, mediated at least in part through host immunity. To improve our understanding of this tripartite interplay, we investigated community and functional dynamics between the murine protist Tritrichomonas musculus and intestinal bacteria in healthy and B-cell-deficient mice. We identified dramatic, protist-driven remodeling of resident microbiome growth and activities, in parallel with Tritrichomonas musculus functional changes, which were accelerated in the absence of B cells. Metatranscriptomic data revealed nutrient-based competition between bacteria and the protist. Single-cell transcriptomics identified distinct Tritrichomonas musculus life stages, providing new evidence for trichomonad sexual replication and the formation of pseudocysts. Unique cell states were validated in situ through microscopy and flow cytometry. Our results reveal complex microbial dynamics during the establishment of a commensal protist in the gut, and provide valuable data sets to drive future mechanistic studies.
Assuntos
Microbioma Gastrointestinal , Microbiota , Tritrichomonas , Animais , Camundongos , Eucariotos , BactériasRESUMO
AIMS: Abdominal aortic aneurysm (AAA) is a highly lethal disease with progressive dilatation of the abdominal aorta accompanied by degradation and remodelling of the vessel wall due to chronic inflammation. Platelets play an important role in cardiovascular diseases, but their role in AAA is poorly understood. METHODS AND RESULTS: The present study revealed that platelets play a crucial role in promoting AAA through modulation of inflammation and degradation of the extracellular matrix (ECM). They are responsible for the up-regulation of SPP1 (osteopontin, OPN) gene expression in macrophages and aortic tissue, which triggers inflammation and remodelling and also platelet adhesion and migration into the abdominal aortic wall and the intraluminal thrombus (ILT). Further, enhanced platelet activation and pro-coagulant activity result in elevated gene expression of various cytokines, Mmp9 and Col1a1 in macrophages and Il-6 and Mmp9 in fibroblasts. Enhanced platelet activation and pro-coagulant activity were also detected in AAA patients. Further, we detected platelets and OPN in the vessel wall and in the ILT of patients who underwent open repair of AAA. Platelet depletion in experimental murine AAA reduced inflammation and ECM remodelling, with reduced elastin fragmentation and aortic diameter expansion. Of note, OPN co-localized with platelets, suggesting a potential role of OPN for the recruitment of platelets into the ILT and the aortic wall. CONCLUSION: In conclusion, our data strongly support the potential relevance of anti-platelet therapy to reduce AAA progression and rupture in AAA patients.
Assuntos
Aneurisma da Aorta Abdominal , Metaloproteinase 9 da Matriz , Humanos , Animais , Camundongos , Metaloproteinase 9 da Matriz/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Aorta Abdominal/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Fibroblastos/metabolismoRESUMO
One of the final steps in the morphogenetic pathway of phage λ is the packaging of a single genome into a preformed empty head structure. In addition to the terminase enzyme, the packaging chaperone, FI protein (gpFI), is required for efficient DNA packaging. In this study, we demonstrate an interaction between gpFI and the major head protein, gpE. Amino acid substitutions in gpFI that reduced the strength of this interaction also decreased the biological activity of gpFI, implying that this head binding activity is essential for the function of gpFI. We also show that gpFI is a two-domain protein, and the C-terminal domain is responsible for the head binding activity. Using nuclear magnetic resonance spectroscopy, we determined the three-dimensional structure of the C-terminal domain and characterized the helical nature of the N-terminal domain. Through structural comparisons, we were able to identify two previously unannotated prophage-encoded proteins with tertiary structures similar to gpFI, although they lack significant pairwise sequence identity. Sequence analysis of these diverse homologues led us to identify related proteins in a variety of myo- and siphophages, revealing that gpFI function has a more highly conserved role in phage morphogenesis than was previously appreciated. Finally, we present a novel model for the mechanism of gpFI chaperone activity in the DNA packaging reaction of phage λ.
Assuntos
Bacteriófago lambda/química , Bacteriófago lambda/enzimologia , Endodesoxirribonucleases/química , Sequência de Aminoácidos , Catálise , Cromatografia em Gel , Empacotamento do DNA , DNA Viral/genética , Genoma Viral , Espectroscopia de Ressonância Magnética/métodos , Dados de Sequência Molecular , Ligação Proteica/genética , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de AminoácidosRESUMO
Cas4 proteins, a core protein family associated with the microbial system of adaptive immunity CRISPR, are predicted to function in the adaptation step of the CRISPR mechanism. Here we show that the Cas4 protein SSO0001 from the archaeon Sulfolobus solfataricus has metal-dependent endonuclease and 5'â3' exonuclease activities against single-stranded DNA, as well as ATP-independent DNA unwinding activity toward double-stranded DNA. The crystal structure of SSO0001 revealed a decameric toroid formed by five dimers with each protomer containing one [4Fe-4S] cluster and one Mn(2+) ion bound in the active site located inside the internal tunnel. The conserved RecB motif and four Cys residues are important for DNA binding and cleavage activities, whereas DNA unwinding depends on several residues located near the [4Fe-4S] cluster. Our results suggest that Cas4 proteins might contribute to the addition of novel CRISPR spacers through the formation of 3'-DNA overhangs and to the degradation of foreign DNA.