Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 27(2): 1433-1452, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30696209

RESUMO

We theoretically investigate the use of Rayleigh surface acoustic waves (SAWs) for refractive index modulation in optical waveguides consisting of amorphous dielectrics. Considering low-loss Si3N4 waveguides with a standard core cross-section of 4.4×0.03 µm2 size, buried 8-µm deep in a SiO2 cladding, we compare surface acoustic wave generation in various different geometries via a piezo-active, lead zirconate titanate film placed on top of the surface and driven via an interdigitized transducer (IDT). Using numerical solutions of the acoustic and optical wave equations, we determine the strain distribution of the SAW under resonant excitation. From the overlap of the acoustic strain field with the optical mode field, we calculate and maximize the attainable amplitude of index modulation in the waveguide. For the example of a near-infrared wavelength of 840 nm, a maximum shift in relative effective refractive index of 0.7x10-3 was obtained for TE polarized light, using an IDT period of 30-35 µm, a film thickness of 2.5-3.5 µm, and an IDT voltage of 10 V. For these parameters, the resonant frequency is in the range of 70-85 MHz. The maximum shift increases to 1.2x10-3, with a corresponding resonant frequency of 87 MHz, when the height of the cladding above the core is reduced to 3 µm. The relative index change is about 300 times higher than in previous work based on non-resonant proximity piezo-actuation, and the modulation frequency is about 200 times higher. Exploiting the maximum relative index change of 1.2×10-3 in a low-loss, balanced Mach-Zehnder modulator should allow full-contrast modulation in devices as short as 120 µm (half-wave voltage length product = 0.24 Vcm).

2.
Opt Express ; 25(2): 1542-1554, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28158036

RESUMO

We demonstrate supercontinuum generation in stoichiometric silicon nitride (Si3N4 in SiO2) integrated optical waveguides, pumped at telecommunication wavelengths. The pump laser is a mode-locked erbium fiber laser at a wavelength of 1.56 µm with a pulse duration of 120 fs. With a waveguide-internal pulse energy of 1.4 nJ and a waveguide with 1.0 µm × 0.9 µm cross section, designed for anomalous dispersion across the 1500 nm telecommunication range, the output spectrum extends from the visible, at around 526 nm, up to the mid-infrared, at least to 2.6 µm, the instrumental limit of our detection. This output spans more than 2.2 octaves (454 THz at the -30 dB level). The measured output spectra agree well with theoretical modeling based on the generalized nonlinear Schrödinger equation. The infrared part of the supercontinuum spectra shifts progressively towards the mid-infrared, well beyond 2.6 µm, by increasing the width of the waveguides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA