Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 242(1): 247-261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358035

RESUMO

Effector genes, encoding molecules involved in disease establishment, are concertedly expressed throughout the lifecycle of plant-pathogenic fungi. However, little is known about how effector gene expression is regulated. Since many effector genes are located in repeat-rich regions, the role of chromatin remodeling in their regulation was recently investigated, notably establishing that the repressive histone modification H3K9me3, deposited by KMT1, was involved in several fungal species including Leptosphaeria maculans. Nevertheless, previous data suggest that a second regulatory layer, probably involving a specific transcription factor (TF), might be required. In L. maculans, a Dothideomycete causing stem canker of oilseed rape, we identified the ortholog of Pf2, a TF belonging to the Zn2Cys6 fungal-specific family, and described as essential for pathogenicity and effector gene expression. We investigated its role together with KMT1, by inactivating and over-expressing LmPf2 in a wild-type strain and a ∆kmt1 mutant. Functional analyses of the corresponding transformants highlighted an essential role of LmPf2 in the establishment of pathogenesis and we found a major effect of LmPf2 on the induction of effector gene expression once KMT1 repression is lifted. Our results show, for the first time, a dual control of effector gene expression.


Assuntos
Ascomicetos , Brassica napus , Leptosphaeria , Ascomicetos/fisiologia , Brassica napus/genética , Virulência/genética , Expressão Gênica , Doenças das Plantas/microbiologia
2.
Curr Genet ; 65(4): 965-980, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30848345

RESUMO

Botcinic acid is a phytotoxic polyketide involved in the virulence of the gray mold fungus Botrytis cinerea. Here, we aimed to investigate the specific regulation of the cluster of Bcboa genes that is responsible for its biosynthesis. Our analysis showed that this cluster is located in a subtelomeric genomic region containing alternating G + C/A + T-balanced regions, and A + T-rich regions made from transposable elements that underwent RIP (Repeat-Induced Point mutation). Genetic analyses demonstrated that BcBoa13, a putative Zn2Cys6 transcription factor, is a nuclear protein with a major positive regulatory role on the expression of other Bcboa1-to-Bcboa12 genes, and botcinic acid production. In conclusion, the structure and the regulation of the botcinic acid gene cluster show similar features with the cluster responsible for the biosynthesis of the other known phytotoxin produced by B. cinerea, i.e., the sesquiterpene botrydial. Both clusters contain a gene encoding a pathway-specific Zn2Cys6 positive regulator, and both are surrounded by relics of transposons which raise some questions about the role of these repeated elements in the evolution and regulation of the secondary metabolism gene clusters in Botrytis.


Assuntos
Botrytis/genética , Doenças das Plantas/genética , Policetídeos/metabolismo , Fatores de Transcrição/genética , Elementos de DNA Transponíveis/genética , Regulação Fúngica da Expressão Gênica , Família Multigênica/genética , Doenças das Plantas/microbiologia , Mutação Puntual , Zinco/química
3.
Fungal Genet Biol ; 96: 33-46, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27721016

RESUMO

Botrydial (BOT) is a non-host specific phytotoxin produced by the polyphagous phytopathogenic fungus Botrytis cinerea. The genomic region of the BOT biosynthetic gene cluster was investigated and revealed two additional genes named Bcbot6 and Bcbot7. Analysis revealed that the G+C/A+T-equilibrated regions that contain the Bcbot genes alternate with A+T-rich regions made of relics of transposable elements that have undergone repeat-induced point mutations (RIP). Furthermore, BcBot6, a Zn(II)2Cys6 putative transcription factor was identified as a nuclear protein and the major positive regulator of BOT biosynthesis. In addition, the phenotype of the ΔBcbot6 mutant indicated that BcBot6 and therefore BOT are dispensable for the development, pathogenicity and response to abiotic stresses in the B. cinerea strain B05.10. Finally, our data revealed that B. pseudocinerea, that is also polyphagous and lives in sympatry with B. cinerea, lacks the ability to produce BOT. Identification of BcBot6 as the major regulator of BOT synthesis is the first step towards a comprehensive understanding of the complete regulation network of BOT synthesis and of its ecological role in the B. cinerea life cycle.


Assuntos
Aldeídos/metabolismo , Botrytis/genética , Compostos Bicíclicos com Pontes/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Família Multigênica , Fatores de Transcrição/metabolismo , Sequência Rica em At , Botrytis/metabolismo , Botrytis/patogenicidade , Elementos de DNA Transponíveis , DNA Fúngico , Proteínas Fúngicas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Virulência
4.
Mol Plant Microbe Interact ; 28(6): 659-74, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25625818

RESUMO

Botrytis cinerea, the gray mold fungus, is an important plant pathogen. Field populations are characterized by variability with regard to morphology, the mode of reproduction (conidiation or sclerotia formation), the spectrum of secondary metabolites (SM), and virulence. Natural variation in bcvel1 encoding the ortholog of Aspergillus nidulans VeA, a member of the VELVET complex, was previously shown to affect light-dependent differentiation, the formation of oxalic acid (OA), and virulence. To gain broader insight into the B. cinerea VELVET complex, an ortholog of A. nidulans LaeA, BcLAE1, a putative interaction partner of BcVEL1, was studied. BcVEL1 but not its truncated versions interacts with BcLAE1 and BcVEL2 (VelB ortholog). In accordance with the expected common as well as specific functions of BcVEL1 and BcLAE1, the deletions of both genes result in similar though not identical phenotypes. Both mutants lost the ability to produce OA, to colonize the host tissue, and to form sclerotia. However, mutants differ with regard to aerial hyphae and conidia formation. Genome-wide expression analyses revealed that BcVEL1 and BcLAE1 have common and distinct target genes. Some of the genes that are underexpressed in both mutants, e.g., those encoding SM-related enzymes, proteases, and carbohydrate-active enzymes, may account for their reduced virulence.


Assuntos
Botrytis , Regulação Fúngica da Expressão Gênica , Complexos Multiproteicos , Phaseolus/microbiologia , Doenças das Plantas/microbiologia , Vitis/microbiologia , Aspergillus nidulans/genética , Botrytis/genética , Botrytis/metabolismo , Botrytis/patogenicidade , Frutas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Hifas , Luz , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Folhas de Planta/microbiologia , Metabolismo Secundário , Deleção de Sequência , Esporos Fúngicos , Técnicas do Sistema de Duplo-Híbrido , Virulência
5.
Genome Biol ; 22(1): 225, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399815

RESUMO

BACKGROUND: Retrotransposons are genetic elements inducing mutations in all domains of life. Despite their detrimental effect, retrotransposons can become temporarily active during epigenetic reprogramming and cellular stress response, which may accelerate host genome evolution. In fungal pathogens, a positive role has been attributed to retrotransposons when shaping genome architecture and expression of genes encoding pathogenicity factors; thus, retrotransposons are known to influence pathogenicity. RESULTS: We uncover a hitherto unknown role of fungal retrotransposons as being pathogenicity factors, themselves. The aggressive fungal plant pathogen, Botrytis cinerea, is known to deliver some long-terminal repeat (LTR) deriving regulatory trans-species small RNAs (BcsRNAs) into plant cells to suppress host gene expression for infection. We find that naturally occurring, less aggressive B. cinerea strains possess considerably lower copy numbers of LTR retrotransposons and had lost retrotransposon BcsRNA production. Using a transgenic proof-of-concept approach, we reconstitute retrotransposon expression in a BcsRNA-lacking B. cinerea strain, which results in enhanced aggressiveness in a retrotransposon and BcsRNA expression-dependent manner. Moreover, retrotransposon expression in B. cinerea leads to suppression of plant defence-related genes during infection. CONCLUSIONS: We propose that retrotransposons are pathogenicity factors that manipulate host plant gene expression by encoding trans-species BcsRNAs. Taken together, the novelty that retrotransposons are pathogenicity factors will have a broad impact on studies of host-microbe interactions and pathology.


Assuntos
Botrytis/genética , Plantas/genética , Retroelementos , Fatores de Virulência , Proteínas Fúngicas/genética , Expressão Gênica , Genes de Plantas , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Plantas/microbiologia , RNA-Seq , Sequências Repetidas Terminais , Sequenciamento Completo do Genoma
6.
Front Plant Sci ; 11: 611643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552104

RESUMO

Alternaria brassicicola causes black spot disease in Brassicaceae. During host infection, this necrotrophic fungus is exposed to various antimicrobial compounds, such as the phytoalexin brassinin which is produced by many cultivated Brassica species. To investigate the cellular mechanisms by which this compound causes toxicity and the corresponding fungal adaptive strategies, we first analyzed fungal transcriptional responses to short-term exposure to brassinin and then used additional functional approaches. This study supports the hypothesis that indolic phytoalexin primarily targets mitochondrial functions in fungal cells. Indeed, we notably observed that phytoalexin treatment of A. brassicicola disrupted the mitochondrial membrane potential and resulted in a significant and rapid decrease in the oxygen consumption rates. Secondary effects, such as Reactive oxygen species production, changes in lipid and endoplasmic reticulum homeostasis were then found to be induced. Consequently, the fungus has to adapt its metabolism to protect itself against the toxic effects of these molecules, especially via the activation of high osmolarity glycerol and cell wall integrity signaling pathways and by induction of the unfolded protein response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA