Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rice (N Y) ; 10(1): 50, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247303

RESUMO

BACKGROUND: The DEFECTIVE IN OUTER CELL LAYER SPECIFICATION 1 (DOCS1) gene belongs to the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) subfamily. It has been discovered few years ago in Oryza sativa (rice) in a screen to isolate mutants with defects in sensitivity to aluminum. The c68 (docs1-1) mutant possessed a nonsense mutation in the C-terminal part of the DOCS1 kinase domain. FINDINGS: We have generated a new loss-of-function mutation in the DOCS1 gene (docs1-2) using the CRISPR-Cas9 technology. This new loss-of-function mutant and docs1-1 present similar phenotypes suggesting the original docs1-1 was a null allele. Besides the aluminum sensitivity phenotype, both docs1 mutants shared also several root phenotypes described previously: less root hairs and mixed identities of the outer cell layers. Moreover, our new results suggest that DOCS1 could also play a role in root cap development. We hypothesized these docs1 root phenotypes may affect gravity responses. As expected, in seedlings, the early gravitropic response was delayed. Furthermore, at adult stage, the root gravitropic set angle of docs1 mutants was also affected since docs1 mutant plants displayed larger root cone angles. CONCLUSIONS: All these observations add new insights into the DOCS1 gene function in gravitropic responses at several stages of plant development.

2.
Theor Appl Genet ; 106(8): 1396-408, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12677401

RESUMO

We investigated the potential of an improved Agrobacterium tumefaciens-mediated transformation procedure of japonica rice ( Oryza sativa L.) for generating large numbers of T-DNA plants that are required for functional analysis of this model genome. Using a T-DNA construct bearing the hygromycin resistance ( hpt), green fluorescent protein ( gfp) and beta-glucuronidase ( gusA) genes, each individually driven by a CaMV 35S promoter, we established a highly efficient seed-embryo callus transformation procedure that results both in a high frequency (75-95%) of co-cultured calli yielding resistant cell lines and the generation of multiple (10 to more than 20) resistant cell lines per co-cultured callus. Efficiencies ranged from four to ten independent transformants per co-cultivated callus in various japonica cultivars. We further analysed the T-DNA integration patterns within a population of more than 200 transgenic plants. In the three cultivars studied, 30-40% of the T(0) plants were found to have integrated a single T-DNA copy. Analyses of segregation for hygromycin resistance in T(1) progenies showed that 30-50% of the lines harbouring multiple T-DNA insertions exhibited hpt gene silencing, whereas only 10% of lines harbouring a single T-DNA insertion was prone to silencing. Most of the lines silenced for hpt also exhibited apparent silencing of the gus and gfp genes borne by the T-DNA. The genomic regions flanking the left border of T-DNA insertion points were recovered in 477 plants and sequenced. Adapter-ligation Polymerase chain reaction analysis proved to be an efficient and reliable method to identify these sequences. By homology search, 77 T-DNA insertion sites were localized on BAC/PAC rice Nipponbare sequences. The influence of the organization of T-DNA integration on subsequent identification of T-DNA insertion sites and gene expression detection systems is discussed.


Assuntos
DNA Bacteriano/genética , Genoma de Planta , Genômica , Oryza/genética , Agrobacterium tumefaciens/fisiologia , Sequência de Bases , Caulimovirus/genética , Primers do DNA , Glucuronidase/genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Regiões Promotoras Genéticas , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA