Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nature ; 585(7824): 273-276, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516797

RESUMO

Effective therapies to treat coronavirus disease 2019 (COVID-19) are urgently needed. While many investigational, approved, and repurposed drugs have been suggested as potential treatments, preclinical data from animal models can guide the search for effective treatments by ruling out those that lack efficacy in vivo. Remdesivir (GS-5734) is a nucleotide analogue prodrug with broad antiviral activity1,2 that is currently being investigated in COVID-19 clinical trials and recently received Emergency Use Authorization from the US Food and Drug Administration3,4. In animal models, remdesivir was effective against infection with Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV)2,5,6. In vitro, remdesivir inhibited replication of SARS-CoV-27,8. Here we investigate the efficacy of remdesivir in a rhesus macaque model of SARS-CoV-2 infection9. Unlike vehicle-treated animals, macaques treated with remdesivir did not show signs of respiratory disease; they also showed reduced pulmonary infiltrates on radiographs and reduced virus titres in bronchoalveolar lavages twelve hours after the first dose. Virus shedding from the upper respiratory tract was not reduced by remdesivir treatment. At necropsy, remdesivir-treated animals had lower lung viral loads and reduced lung damage. Thus, treatment with remdesivir initiated early during infection had a clinical benefit in rhesus macaques infected with SARS-CoV-2. Although the rhesus macaque model does not represent the severe disease observed in some patients with COVID-19, our data support the early initiation of remdesivir treatment in patients with COVID-19 to prevent progression to pneumonia.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Macaca mulatta/virologia , Pneumonia Viral/prevenção & controle , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/farmacocinética , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Betacoronavirus/genética , Betacoronavirus/patogenicidade , Líquido da Lavagem Broncoalveolar/virologia , COVID-19 , Infecções por Coronavirus/patologia , Infecções por Coronavirus/fisiopatologia , Análise Mutacional de DNA , Progressão da Doença , Farmacorresistência Viral , Feminino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/virologia , Masculino , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/patologia , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , SARS-CoV-2 , Prevenção Secundária , Fatores de Tempo , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos
2.
J Infect Dis ; 230(3): 624-634, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657001

RESUMO

BACKGROUND: Although antivirals remain important for the treatment COVID-19, methods to assess treatment efficacy are lacking. Here, we investigated the impact of remdesivir on viral dynamics and their contribution to understanding antiviral efficacy in the multicenter Adaptive COVID-19 Treatment Trial 1, which randomized patients to remdesivir or placebo. METHODS: Longitudinal specimens collected during hospitalization from a substudy of 642 patients with COVID-19 were measured for viral RNA (upper respiratory tract and plasma), viral nucleocapsid antigen (serum), and host immunologic markers. Associations with clinical outcomes and response to therapy were assessed. RESULTS: Higher baseline plasma viral loads were associated with poorer clinical outcomes, and decreases in viral RNA and antigen in blood but not the upper respiratory tract correlated with enhanced benefit from remdesivir. The treatment effect of remdesivir was most pronounced in patients with elevated baseline nucleocapsid antigen levels: the recovery rate ratio was 1.95 (95% CI, 1.40-2.71) for levels >245 pg/mL vs 1.04 (95% CI, .76-1.42) for levels <245 pg/mL. Remdesivir also accelerated the rate of viral RNA and antigen clearance in blood, and patients whose blood levels decreased were more likely to recover and survive. CONCLUSIONS: Reductions in SARS-CoV-2 RNA and antigen levels in blood correlated with clinical benefit from antiviral therapy. CLINICAL TRIAL REGISTRATION: NCT04280705 (ClinicalTrials.gov).


Assuntos
Monofosfato de Adenosina , Alanina , Antivirais , Biomarcadores , Tratamento Farmacológico da COVID-19 , COVID-19 , RNA Viral , SARS-CoV-2 , Carga Viral , Humanos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/uso terapêutico , SARS-CoV-2/imunologia , Antivirais/uso terapêutico , RNA Viral/sangue , COVID-19/sangue , COVID-19/virologia , COVID-19/imunologia , Masculino , Feminino , Biomarcadores/sangue , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Idoso , Antígenos Virais/sangue
3.
Artigo em Inglês | MEDLINE | ID: mdl-39436633

RESUMO

We explored associations between multisystemic resilience and anxious-depressed symptoms in Black families experiencing maternal syndemics (i.e., co-occurring epidemics of substance abuse, violence, HIV/AIDS), using a sequential explanatory study design. Hierarchical regression was used to analyze data from 171 Black youth (57% girls; Mage=12.13, SD = 2.90). Girls (ß=-0.17, p = .02) with higher inter/intrapersonal skills (ß = - 0.28, p = .004) and more open familial communication (ß = - 0.40, p < .001) reported fewer anxious-depressed symptoms, F(12, 147) = 5.68; p < .001, Adj R2 = 26.1%. Qualitative results from a subsample of 10 Black youth-mother dyads explored inter/intrapersonal factors (i.e., emotion regulation strategies, goal setting, persistence and perseverance, problem-solving skills) and open communication factors (i.e., comfortable environment to talk, solving problems, processing feelings, showing affection, benefiting from open communication) that support Black youth resilience. Findings highlight key resilience factors that could be bolstered in future interventions to reduce anxious-depressed symptoms among Black youth exposed to maternal syndemics.

4.
J Infect Dis ; 228(9): 1263-1273, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466213

RESUMO

BACKGROUND: Remdesivir is approved for treatment of coronavirus disease 2019 (COVID-19) in nonhospitalized and hospitalized adult and pediatric patients. Here we present severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resistance analyses from the phase 3 ACTT-1 randomized placebo-controlled trial conducted in adult participants hospitalized with COVID-19. METHODS: Swab samples were collected at baseline and longitudinally through day 29. SARS-CoV-2 genomes were sequenced using next-generation sequencing. Phenotypic analysis was conducted directly on participant virus isolates and/or using SARS-CoV-2 subgenomic replicons expressing mutations identified in the Nsp12 target gene. RESULTS: Among participants with both baseline and postbaseline sequencing data, emergent Nsp12 substitutions were observed in 12 of 31 (38.7%) and 12 of 30 (40.0%) participants in the remdesivir and placebo arms, respectively. No emergent Nsp12 substitutions in the remdesivir arm were observed in more than 1 participant. Phenotyping showed low to no change in susceptibility to remdesivir relative to wild-type Nsp12 reference for the substitutions tested: A16V (0.8-fold change in EC50), P323L + V792I (2.2-fold), C799F (2.5-fold), K59N (1.0-fold), and K59N + V792I (3.4-fold). CONCLUSIONS: The similar rate of emerging Nsp12 substitutions in the remdesivir and placebo arms and the minimal change in remdesivir susceptibility among tested substitutions support a high barrier to remdesivir resistance development in COVID-19 patients. Clinical Trials Registration. NCT04280705.


Assuntos
COVID-19 , Adulto , Humanos , Criança , SARS-CoV-2/genética , Tratamento Farmacológico da COVID-19 , Monofosfato de Adenosina/uso terapêutico , Alanina/uso terapêutico , Antivirais/uso terapêutico
5.
J Biol Chem ; 298(2): 101529, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953856

RESUMO

Remdesivir (RDV) is a direct-acting antiviral agent that is approved in several countries for the treatment of coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2. RDV exhibits broad-spectrum antiviral activity against positive-sense RNA viruses, for example, severe acute respiratory syndrome coronavirus and hepatitis C virus, and nonsegmented negative-sense RNA viruses, for example, Nipah virus, whereas segmented negative-sense RNA viruses such as influenza virus or Crimean-Congo hemorrhagic fever virus are not sensitive to the drug. The reasons for this apparent efficacy pattern are unknown. Here, we expressed and purified representative RNA-dependent RNA polymerases and studied three biochemical parameters that have been associated with the inhibitory effects of RDV-triphosphate (TP): (i) selective incorporation of the nucleotide substrate RDV-TP, (ii) the effect of the incorporated RDV-monophosphate (MP) on primer extension, and (iii) the effect of RDV-MP in the template during incorporation of the complementary UTP. We found a strong correlation between antiviral effects and efficient incorporation of RDV-TP. Inhibition in primer extension reactions was heterogeneous and usually inefficient at higher NTP concentrations. In contrast, template-dependent inhibition of UTP incorporation opposite the embedded RDV-MP was seen with all polymerases. Molecular modeling suggests a steric conflict between the 1'-cyano group of the inhibitor and residues of the structurally conserved RNA-dependent RNA polymerase motif F. We conclude that future efforts in the development of nucleotide analogs with a broader spectrum of antiviral activities should focus on improving rates of incorporation while capitalizing on the inhibitory effects of a bulky 1'-modification.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Modelos Moleculares , Vírus de RNA/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/farmacologia , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Vírus de RNA de Sentido Negativo/efeitos dos fármacos , Vírus de RNA de Sentido Negativo/enzimologia , Vírus Nipah/efeitos dos fármacos , Vírus Nipah/enzimologia , Vírus de RNA de Cadeia Positiva/efeitos dos fármacos , Vírus de RNA de Cadeia Positiva/enzimologia , Vírus de RNA/efeitos dos fármacos , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Replicação Viral/efeitos dos fármacos
6.
Proc Natl Acad Sci U S A ; 117(43): 26946-26954, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33028676

RESUMO

Remdesivir is a broad-spectrum antiviral nucleotide prodrug that has been clinically evaluated in Ebola virus patients and recently received emergency use authorization (EUA) for treatment of COVID-19. With approvals from the Federal Select Agent Program and the Centers for Disease Control and Prevention's Institutional Biosecurity Board, we characterized the resistance profile of remdesivir by serially passaging Ebola virus under remdesivir selection; we generated lineages with low-level reduced susceptibility to remdesivir after 35 passages. We found that a single amino acid substitution, F548S, in the Ebola virus polymerase conferred low-level reduced susceptibility to remdesivir. The F548 residue is highly conserved in filoviruses but should be subject to specific surveillance among novel filoviruses, in newly emerging variants in ongoing outbreaks, and also in Ebola virus patients undergoing remdesivir therapy. Homology modeling suggests that the Ebola virus polymerase F548 residue lies in the F-motif of the polymerase active site, a region that was previously identified as susceptible to resistance mutations in coronaviruses. Our data suggest that molecular surveillance of this region of the polymerase in remdesivir-treated COVID-19 patients is also warranted.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Betacoronavirus/enzimologia , Ebolavirus/enzimologia , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/química , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Betacoronavirus/química , Linhagem Celular , Tolerância a Medicamentos/genética , Ebolavirus/efeitos dos fármacos , Ebolavirus/genética , Humanos , Modelos Moleculares , Mutação , RNA Polimerase Dependente de RNA/genética , SARS-CoV-2 , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos
7.
Antimicrob Agents Chemother ; 66(7): e0019822, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35708323

RESUMO

In vitro selection of remdesivir-resistant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed the emergence of a V166L substitution, located outside of the polymerase active site of the Nsp12 protein, after 9 passages of a single lineage. V166L remained the only Nsp12 substitution after 17 passages (10 µM remdesivir), conferring a 2.3-fold increase in 50% effective concentration (EC50). When V166L was introduced into a recombinant SARS-CoV-2 virus, a 1.5-fold increase in EC50 was observed, indicating a high in vitro barrier to remdesivir resistance.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Alanina/análogos & derivados , Alanina/metabolismo , Antivirais/química , Humanos
8.
Antimicrob Agents Chemother ; 66(6): e0022222, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35532238

RESUMO

Genetic variation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence and rapid spread of multiple variants throughout the pandemic, of which Omicron is currently the predominant variant circulating worldwide. SARS-CoV-2 variants of concern/variants of interest (VOC/VOI) have evidence of increased viral transmission, disease severity, or decreased effectiveness of vaccines and neutralizing antibodies. Remdesivir (RDV [VEKLURY]) is a nucleoside analog prodrug and the first FDA-approved antiviral treatment of COVID-19. Here, we present a comprehensive antiviral activity assessment of RDV and its parent nucleoside, GS-441524, against 10 current and former SARS-CoV-2 VOC/VOI clinical isolates by nucleoprotein enzyme-linked immunosorbent assay (ELISA) and plaque reduction assay. Delta and Omicron variants remained susceptible to RDV and GS-441524, with 50% effective concentration (EC50) values 0.30- to 0.62-fold of those observed against the ancestral WA1 isolate. All other tested variants exhibited EC50 values ranging from 0.13- to 2.3-fold of the observed EC50 values against WA1. Analysis of nearly 6 million publicly available variant isolate sequences confirmed that Nsp12, the RNA-dependent RNA polymerase (RdRp) target of RDV and GS-441524, is highly conserved across variants, with only 2 prevalent changes (P323L and G671S). Using recombinant viruses, both RDV and GS-441524 retained potency against all viruses containing frequent variant substitutions or their combination. Taken together, these results highlight the conserved nature of SARS-CoV-2 Nsp12 and provide evidence of sustained SARS-CoV-2 antiviral activity of RDV and GS-441524 across the tested variants. The observed pan-variant activity of RDV supports its continued use for the treatment of COVID-19 regardless of the SARS-CoV-2 variant.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Adenosina/análogos & derivados , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Humanos , SARS-CoV-2/genética
9.
J Biol Chem ; 295(15): 4773-4779, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094225

RESUMO

Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing the outbreak of severe acute respiratory syndrome-coronavirus 2 (CoV-2). Remdesivir (RDV) is an investigational compound with a broad spectrum of antiviral activities against RNA viruses, including severe acute respiratory syndrome-CoV and Middle East respiratory syndrome (MERS-CoV). RDV is a nucleotide analog inhibitor of RNA-dependent RNA polymerases (RdRps). Here, we co-expressed the MERS-CoV nonstructural proteins nsp5, nsp7, nsp8, and nsp12 (RdRp) in insect cells as a part a polyprotein to study the mechanism of inhibition of MERS-CoV RdRp by RDV. We initially demonstrated that nsp8 and nsp12 form an active complex. The triphosphate form of the inhibitor (RDV-TP) competes with its natural counterpart ATP. Of note, the selectivity value for RDV-TP obtained here with a steady-state approach suggests that it is more efficiently incorporated than ATP and two other nucleotide analogs. Once incorporated at position i, the inhibitor caused RNA synthesis arrest at position i + 3. Hence, the likely mechanism of action is delayed RNA chain termination. The additional three nucleotides may protect the inhibitor from excision by the viral 3'-5' exonuclease activity. Together, these results help to explain the high potency of RDV against RNA viruses in cell-based assays.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/farmacologia , Animais , Antivirais/química , Coronavirus/enzimologia , Ebolavirus/enzimologia , Expressão Gênica , Inibidores da Síntese de Ácido Nucleico/química , RNA , RNA Polimerase Dependente de RNA/genética , Células Sf9 , Proteínas não Estruturais Virais/genética
10.
J Biol Chem ; 295(47): 16156-16165, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32967965

RESUMO

Remdesivir (RDV) is a direct-acting antiviral agent that is used to treat patients with severe coronavirus disease 2019 (COVID-19). RDV targets the viral RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have previously shown that incorporation of the active triphosphate form of RDV (RDV-TP) at position i causes delayed chain termination at position i + 3. Here we demonstrate that the S861G mutation in RdRp eliminates chain termination, which confirms the existence of a steric clash between Ser-861 and the incorporated RDV-TP. With WT RdRp, increasing concentrations of NTP pools cause a gradual decrease in termination and the resulting read-through increases full-length product formation. Hence, RDV residues could be embedded in copies of the first RNA strand that is later used as a template. We show that the efficiency of incorporation of the complementary UTP opposite template RDV is compromised, providing a second opportunity to inhibit replication. A structural model suggests that RDV, when serving as the template for the incoming UTP, is not properly positioned because of a significant clash with Ala-558. The adjacent Val-557 is in direct contact with the template base, and the V557L mutation is implicated in low-level resistance to RDV. We further show that the V557L mutation in RdRp lowers the nucleotide concentration required to bypass this template-dependent inhibition. The collective data provide strong evidence to show that template-dependent inhibition of SARS-CoV-2 RdRp by RDV is biologically relevant.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Terminação da Transcrição Genética/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Modelos Químicos , Mutação , Nucleotídeos/metabolismo , SARS-CoV-2/genética , Moldes Genéticos , Replicação Viral/efeitos dos fármacos
11.
J Biol Chem ; 295(20): 6785-6797, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32284326

RESUMO

Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2'-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Betacoronavirus/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Animais , Betacoronavirus/fisiologia , Modelos Moleculares , SARS-CoV-2 , Células Sf9 , Spodoptera
12.
Artigo em Inglês | MEDLINE | ID: mdl-33229429

RESUMO

Remdesivir (RDV, GS-5734), the first FDA-approved antiviral for the treatment of COVID-19, is a single diastereomer monophosphoramidate prodrug of an adenosine analogue. It is intracellularly metabolized into the active triphosphate form, which in turn acts as a potent and selective inhibitor of multiple viral RNA polymerases. RDV has broad-spectrum activity against members of the coronavirus family, such as SARS-CoV-2, SARS-CoV, and MERS-CoV, as well as filoviruses and paramyxoviruses. To assess the potential for off-target toxicity, RDV was evaluated in a set of cellular and biochemical assays. Cytotoxicity was evaluated in a set of relevant human cell lines and primary cells. In addition, RDV was evaluated for mitochondrial toxicity under aerobic and anaerobic metabolic conditions, and for the effects on mitochondrial DNA content, mitochondrial protein synthesis, cellular respiration, and induction of reactive oxygen species. Last, the active 5'-triphosphate metabolite of RDV, GS-443902, was evaluated for potential interaction with human DNA and RNA polymerases. Among all of the human cells tested under 5 to 14 days of continuous exposure, the 50% cytotoxic concentration (CC50) values of RDV ranged from 1.7 to >20 µM, resulting in selectivity indices (SI, CC50/EC50) from >170 to 20,000, with respect to RDV anti-SARS-CoV-2 activity (50% effective concentration [EC50] of 9.9 nM in human airway epithelial cells). Overall, the cellular and biochemical assays demonstrated a low potential for RDV to elicit off-target toxicity, including mitochondria-specific toxicity, consistent with the reported clinical safety profile.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/farmacologia , Antivirais/química , COVID-19/virologia , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Mitocôndrias/efeitos dos fármacos , Cultura Primária de Células
13.
J Infect Dis ; 222(9): 1468-1477, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971597

RESUMO

BACKGROUND: Presatovir is an oral respiratory syncytial virus (RSV) fusion inhibitor targeting RSV F protein. In a double-blind, placebo-controlled study in healthy adults experimentally infected with RSV (Memphis-37b), presatovir significantly reduced viral load and clinical disease severity in a dose-dependent manner. METHODS: Viral RNA from nasal wash samples was amplified and the F gene sequenced to monitor presatovir resistance. Effects of identified amino acid substitutions on in vitro susceptibility to presatovir, viral fitness, and clinical outcome were assessed. RESULTS: Twenty-eight treatment-emergent F substitutions were identified. Of these, 26 were tested in vitro; 2 were not due to lack of recombinant virus recovery. Ten substitutions did not affect presatovir susceptibility, and 16 substitutions reduced RSV susceptibility to presatovir (2.9- to 410-fold). No substitutions altered RSV susceptibility to palivizumab or ribavirin. Frequency of phenotypically resistant substitutions was higher with regimens containing lower presatovir dose and shorter treatment duration. Participants with phenotypic presatovir resistance had significantly higher nasal viral load area under the curve relative to those without, but substitutions did not significantly affect peak viral load or clinical manifestations of RSV disease. CONCLUSIONS: Emergence of presatovir-resistant RSV occurred during therapy but did not significantly affect clinical efficacy in participants with experimental RSV infection.


Assuntos
Indazóis/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Sulfonamidas/uso terapêutico , Inibidores de Proteínas Virais de Fusão/uso terapêutico , Adolescente , Adulto , Substituição de Aminoácidos , Relação Dose-Resposta a Droga , Método Duplo-Cego , Farmacorresistência Viral/genética , Humanos , Pessoa de Meia-Idade , Vírus Sinciciais Respiratórios/genética , Carga Viral/efeitos dos fármacos , Adulto Jovem
14.
J Infect Dis ; 222(11): 1894-1901, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479636

RESUMO

Marburg virus (MARV) is a filovirus with documented human case-fatality rates of up to 90%. Here, we evaluated the therapeutic efficacy of remdesivir (GS-5734) in nonhuman primates experimentally infected with MARV. Beginning 4 or 5 days post inoculation, cynomolgus macaques were treated once daily for 12 days with vehicle, 5 mg/kg remdesivir, or a 10-mg/kg loading dose followed by 5 mg/kg remdesivir. All vehicle-control animals died, whereas 83% of animals receiving a 10-mg/kg loading dose of remdesivir survived, as did 50% of animals receiving a 5-mg/kg remdesivir regimen. Remdesivir-treated animals exhibited improved clinical scores, lower plasma viral RNA, and improved markers of kidney function, liver function, and coagulopathy versus vehicle-control animals. The small molecule remdesivir showed therapeutic efficacy in this Marburg virus disease model with treatment initiation 5 days post inoculation, supporting further assessment of remdesivir for the treatment of Marburg virus disease in humans.


Assuntos
Antimetabólitos/uso terapêutico , Antivirais/uso terapêutico , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus/efeitos dos fármacos , Doenças dos Macacos/tratamento farmacológico , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Modelos Animais de Doenças , Feminino , Estimativa de Kaplan-Meier , Macaca fascicularis , Masculino , Doença do Vírus de Marburg/mortalidade , Doença do Vírus de Marburg/patologia , Doença do Vírus de Marburg/virologia , Doenças dos Macacos/mortalidade , Doenças dos Macacos/patologia , Doenças dos Macacos/virologia , RNA Viral
15.
Clin Infect Dis ; 71(11): 2787-2795, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31915807

RESUMO

BACKGROUND: Presatovir significantly reduced nasal viral load, signs, and symptoms of respiratory syncytial virus (RSV) infection in a human challenge study. We evaluated presatovir in hematopoietic-cell transplant (HCT) recipients with RSV lower respiratory tract infection (LRTI). METHODS: Patients with confirmed RSV in upper and lower respiratory tract and new chest X-ray abnormalities were randomized (1:1), stratified by supplemental oxygen and ribavirin use, to receive oral presatovir 200 mg or placebo every 4 days for 5 doses. The primary endpoint was time-weighted average change in nasal RSV viral load through day 9. Secondary endpoints included supplemental oxygen-free days, incident respiratory failure requiring mechanical ventilation, and all-cause mortality. RESULTS: From January 31, 2015, to March 20, 2017, 60 patients from 17 centers were randomized (31 presatovir, 29 placebo); 59 received study treatment (50 allogeneic, 9 autologous HCT). In the efficacy population (29 presatovir, 28 placebo), presatovir treatment did not significantly reduce time-weighted average change in viral load (-1.12 vs -1.09 log10 copies/mL; treatment difference -0.02 log10 copies/mL, 95% confidence interval: -.62, .57; P = .94), median supplemental oxygen-free days (26 vs 28 days, P = .84), incident respiratory failure (10.3 vs 10.7%, P = .98), or all-cause mortality (0 vs 7.1%, P = .19) versus placebo. Adverse events were similar between arms (presatovir 80%, placebo 79%). Resistance-associated substitutions in RSV fusion protein emerged in 6/29 presatovir-treated patients. CONCLUSIONS: Presatovir treatment was well tolerated in HCT patients with RSV LRTI but did not improve virologic or clinical outcomes versus placebo. CLINICAL TRIALS REGISTRATION: www.clinicaltrials.gov, NCT02254421; EudraCT, #2014-002475-29.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Infecções por Vírus Respiratório Sincicial , Antivirais/efeitos adversos , Método Duplo-Cego , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Sistema Respiratório , Transplantados
16.
Clin Infect Dis ; 71(11): 2777-2786, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31793991

RESUMO

BACKGROUND: Hematopoietic-cell transplant (HCT) recipients are at risk for severe respiratory syncytial virus (RSV) infection. We evaluated the RSV fusion inhibitor presatovir in a randomized, double-blind, Phase II trial in HCT recipients with RSV upper respiratory tract infections. METHODS: Patients were stratified by lymphopenia (<200/µL) and ribavirin use; were randomized, stratified by lymphopenia (<200/µL) and ribavirin use, to receive oral presatovir at 200 mg or a placebo on Days 1, 5, 9, 13, and 17, and were followed through Day 28. The coprimary efficacy endpoints were the time-weighted average change in the nasal RSV viral load between Days 1 and 9 and the proportion of patients developing lower respiratory tract complications (LRTCs) through Day 28. RESULTS: From 23 January 2015 to 16 June 2017, 189 patients were randomly assigned to treatment (96 to presatovir and 93 to the placebo). Presatovir treatment, compared with the placebo treatment, did not significantly affect (prespecified α = 0.01) a time-weighted average decline in the RSV viral load from Day 1 to 9 (treatment difference, -0.33 log10 copies/mL; 95% confidence interval [CI] -.64 to -.02 log10 copies/mL; P = .040) or the progression to LRTC (11.2% vs 19.5%, respectively; odds ratio, 0.50; 95% CI, .22-1.18; P = .11). In a post hoc analysis among patients with lymphopenia, presatovir decreased LRTC development by Day 28 (2/15 [13.3%] vs 9/14 [64.3%], respectively; P = .008), compared with the placebo. Adverse events were similar for patients receiving presatovir and the placebo. CONCLUSIONS: Presatovir had a favorable safety profile in adult HCT recipients with RSV but did not achieve the coprimary endpoints. Exploratory analyses suggest an antiviral effect among patients with lymphopenia. CLINICAL TRIALS REGISTRATION: NCT02254408; EUDRA-CT#2014-002474-36.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Infecções por Vírus Respiratório Sincicial , Infecções Respiratórias , Adulto , Antivirais/uso terapêutico , Método Duplo-Cego , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Transplantados
17.
Artigo em Inglês | MEDLINE | ID: mdl-32071058

RESUMO

This study summarizes drug resistance analyses in 4 recent phase 2b trials of the respiratory syncytial virus (RSV) fusion inhibitor presatovir in naturally infected adults. Adult hematopoietic cell transplant (HCT) recipients, lung transplant recipients, or hospitalized patients with naturally acquired, laboratory-confirmed RSV infection were enrolled in 4 randomized, double-blind, placebo-controlled studies with study-specific presatovir dosing. Full-length RSV F sequences amplified from nasal swabs obtained at baseline and postbaseline were analyzed by population sequencing. Substitutions at RSV fusion inhibitor resistance-associated positions are reported. Genotypic analyses were performed on 233 presatovir-treated and 149 placebo-treated subjects. RSV F variant V127A was present in 8 subjects at baseline. Population sequencing detected treatment-emergent substitutions in 10/89 (11.2%) HCT recipients with upper and 6/29 (20.7%) with lower respiratory tract infection, 1/35 (2.9%) lung transplant recipients, and 1/80 (1.3%) hospitalized patients treated with presatovir; placebo-treated subjects had no emergent resistance-associated substitutions. Subjects with substitutions at resistance-associated positions had smaller decreases in viral load during treatment relative to those without, but they had similar clinical outcomes. Subject population type and dosing regimen may have influenced RSV resistance development during presatovir treatment. Subjects with genotypic resistance development had decreased virologic responses compared to those without genotypic resistance but had comparable clinical outcomes.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Adulto , Antivirais/farmacologia , Antivirais/uso terapêutico , Resistência a Medicamentos , Humanos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/genética
18.
J Infect Dis ; 215(6): 920-927, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28453836

RESUMO

Background: The presence of transmitted drug resistance mutations (TDRMs) in antiretroviral treatment (ART)-naive patients can adversely affect the outcome of ART. Methods: Resistance testing was conducted in 6704 ART-naive subjects predominantly from the United States and Europe in 9 clinical studies conducted by Gilead Sciences from 2000 to 2013. Results: The presence of TDRMs increased during this period (from 5.2% to 11.4%), primarily driven by an increase in nonnucleoside reverse-transcriptase (RT) inhibitor (NNRTI) resistance mutations (from 0.3% to 7.1%), particularly K103N/S (increase from 0.3% to 5.3%). Nucleoside/nucleotide RT inhibitor mutations were found in 3.1% of patients. Only 1 patient had K65R (0.01%) and 7 had M184V/I (0.1%), despite high use of tenofovir disoproxil fumarate (TDF), emtricitabine, and lamivudine and potential transmission of resistance to these drugs. At least 1 thymidine-analogue mutations was present in 2.7% of patients with 0.07% harboring T215Y/F and 2.7% harboring T215 revertant mutations (T215rev). Patients with the combination of M41L + L210W + T215rev showed full human immunodeficiency virus RNA suppression while receiving a TDF- or tenofovir alafenamide-containing regimen. Conclusions: There was an overall increase of TDRMs among patients enrolling in clinical trials from 2000 through 2013, driven primarily by an increase in NNRTI resistance. However, the presence of common TDRMs, including thymidine-analogue mutations/T215rev, showed no impact on response to TDF- or tenofovir alafenamide-containing regimens.


Assuntos
Adenina/análogos & derivados , Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Tenofovir/uso terapêutico , Adenina/uso terapêutico , Adulto , Alanina , Emtricitabina/uso terapêutico , Europa (Continente) , Feminino , HIV-1/efeitos dos fármacos , Humanos , Lamivudina/uso terapêutico , Masculino , Mutação de Sentido Incorreto , Inibidores da Transcriptase Reversa/uso terapêutico , Timidina/análogos & derivados , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA