Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 62(38): 15479-15489, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37682020

RESUMO

Metal-organic frameworks (MOFs) are attracting increasing attention as adsorbents of contaminants of emerging concern that are difficult to remove by conventional processes. This paper examines how functional groups covering the pore walls of phosphinate-based MOFs affect the adsorption of specific pharmaceutical pollutants (diclofenac, cephalexin, and sulfamethoxazole) and their hydrolytic stability. New structures, isoreticular to the phosphinate MOF ICR-7, are presented. The phenyl ring facing the pore wall of the presented MOFs is modified with dimethylamino groups (ICR-8) and ethyl carboxylate groups (ICR-14). These functionalized MOFs were obtained from two newly synthesized phosphinate linkers containing the respective functional groups. The presence of additional functional groups resulted in higher affinity toward the tested pollutants compared to ICR-7 or activated carbon. However, this modification also comes with a reduced adsorption capacity. Importantly, the introduction of the functional groups enhanced the hydrolytic stability of the MOFs.

2.
J Comput Aided Mol Des ; 34(6): 683-695, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32052351

RESUMO

Classical molecular simulation methods were used for a description of an arrangement of intercalated molecules N-(pyridin-4-yl)pyridin-4-amine (AH) and its derivatives, 3-methyl-N-(pyridin-4-yl)pyridin-4-amine (AMe), and 3-nitro-N-(pyridin-4-yl)pyridin-4-amine (ANO2) within a layered structure of zirconium 4-sulfophenylphosphonate. The intercalated molecules were placed between SO3H groups of the host layers. Their mutual positions and orientations were solved by molecular simulation methods and compared with the presented experimental results. Final calculated data showed differences of partially disordered arrangement of the intercalated molecules between zirconium 4-sulfophenylphosphonate layers. The calculation results revealed a dense net of hydrogen bonds connecting water molecules and the guests in the interlayer space and the sulfo groups of the host layers. We calculated the dipole moments of the AH, AMe and ANO2 guests in the final models in order to illustrate potential use of these materials in non-linear optics.


Assuntos
Aminas/química , Modelos Moleculares , Piridinas/química , Simulação por Computador , Ligação de Hidrogênio , Estrutura Molecular , Zircônio/química
3.
Dalton Trans ; 47(9): 2867-2880, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29340415

RESUMO

The intercalation chemistry of layered alkaline-earth metal phenylphosphonates with the general formula MeC6H5PO3·2H2O (Ca, Sr, Ba) is reviewed. The preparation of the host materials is described and their behavior in dependence on the relative humidity and pH of the reaction medium is discussed. Mutual relationships between MeC6H5PO3·2H2O and Me(C6H5PO3H)2 were investigated using a method of computer-controlled addition of reagents. The MeC6H5PO3·2H2O compounds are able to intercalate species having a free electron pair through the so-called coordination intercalation. In this way, 1-alkylamines, 1-alkanols, 1,n-diols and 1,2-diols were intercalated. In the case of the ethanol and methanol intercalates of strontium phenylphosphonate we were able to determine the structure of the host part by single-crystal X-ray diffraction. By combination of the data obtained from the diffraction with molecular modeling we suggested the arrangement of the host molecules in the interlayer space of the host. The arrangement of the shorter diols in the interlayer space of strontium phenylphosphonate was also proposed on the basis of molecular modeling calculations. These models help us to understand the structure of the prepared intercalates.

4.
J Mol Model ; 24(1): 10, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234891

RESUMO

Classical molecular simulation methods were used for a detailed structural description of zirconium 4-sulfophenylphosphonate and zirconium phenylphosphonate 4-sulfophenylphosphonates with general formula Zr(HO3SC6H4PO3) x (C6H5PO3)2-x ·yH2O (x = 0.7-2; y = 0 or 2). First, models describing the structure of zirconium 4-sulfophenylphosphonate (x = 2) were calculated for the hydrated (y = 2) and dehydrated (y = 0) compounds. Subsequently, models for two mixed zirconium phenylphosphonate 4-sulfophenylphosphonates (x = 1.3 and 0.7) were calculated. Optimized models suggest that the presence of water molecules between sulfo groups creates a water-sulfonate layer with a system of hydrogen bonds. We suppose that this arrangement is the reason for a higher proton conductivity of the hydrated samples compared to dehydrated samples. When the water molecules are removed, a small decrease in the basal spacing (around 0.06 Å) is observed. This behavior is confirmed by the simulated models, where no significant changes in the structure on dehydration were observed except the absence of the water molecules and a lower number of hydrogen bonds between two adjacent sulfonate sheets. Due to the good crystallinity of the samples and the presence of sharp non-basal peaks in their X-ray diffraction patterns, Miller indices of the non-basal peaks in the diffraction patterns calculated from the models can be compared with those found in the experimental data. This allowed us to precisely describe for example (15 5-2) planes, from which mutual distances of the phenyl rings were determined to be 2.62 Å. Graphical Abstract Detailed ball and stick view into the interlayer structure of ZrSPhP1.3.

5.
J Mol Model ; 22(6): 143, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27245062

RESUMO

Strontium phenylphosphonate intercalates with 1,2-diols (from 1,2-ethanediol to 1,2-hexanediol) were synthesized and characterized by X-ray diffraction, thermogravimetry, chemical analysis, and molecular simulation methods. Prepared samples exhibit a very good stability at ambient conditions. Structural arrangement calculated by simulation methods suggested formation of cavities surrounded by six benzene rings. Each cavity contained one molecule of diol and one molecule of water for the 1,2-ethanediol to 1,2-butanediol intercalates. In the case of 1,2-pentanediol two types of cavities alternated: one with diol molecules and another one with two water molecules. In the 1,2-hexanediol intercalate the benzene rings created two types of cavities containing one or two diol molecules, respectively, and this conformational variability led to a more disordered arrangement with respect to the models with shorter alkyl chains. Coordination of the oxygen atoms of the diols to the strontium atoms of the host follows the same pattern for all 1,2-diol intercalates except the 1,2-hexanediol intercalate, where these oxygen atoms can be mutually exchanged at their positions. The calculated basal spacings and structural models are in good agreement with experimental basal spacings obtained from X-ray powder diffraction and with other experimental results.

6.
J Colloid Interface Sci ; 460: 181-8, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26319335

RESUMO

Strontium phenylphosphonate intercalates with 1,n diols (n=2-4, 6-8) having general formula SrC6H5PO3⋅x(HO(CH2)nOH)⋅yH2O were prepared by precipitation from strontium phenylphosphonate solution and the corresponding diols. Prepared compounds exhibit a very good stability at ambient conditions. The intercalates were characterized by X-ray diffraction, thermogravimetry and elemental analysis. Thanks to the existence of free spaces among the benzene rings the diols exhibit a peculiar intercalation behavior. This behavior is explained on the basis of molecular simulation, which facilitated to elucidate the arrangement of the diol (guest) molecules in the specifically shaped space between the layers of the host material. From the structural point of view the intercalates can be divided into two subgroups: (i) intercalates with 1,2- to 1,4-diols and (ii) intercalates with 1,6- to 1,8-diols. The alkanediols of the first group are immersed in the free spaces among the benzene groups, their molecules adopt a horseshoe shape meaning cis conformation and are bonded by both of their OH groups to one host layer. The longer alkanediol chains of the second group allow anchoring to both neighboring layers of the host forming a kind of pillared structure in the interlayer space. The diol molecules are in this case bonded to the host layers by their OH groups to the oxygen atoms of the host layers and to water molecules present in the interlayer space through hydrogen bonds. The values of the basal spacing obtained from the experimental powder X-ray patterns are in a very good agreement with the basal spacing values calculated from the models. The molecular simulation of a 1,5-pentanediol intercalate, which we were not be able to synthesize, explained why this intercalate cannot be stable.

7.
J Colloid Interface Sci ; 277(1): 128-37, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15276049

RESUMO

The surface and interlayer structure of rhodamine B (RhB)-montmorillonite for various guest concentrations has been studied using a combination of X-ray powder diffraction and molecular modeling (molecular mechanics and molecular dynamics) in the Cerius(2) modeling environment. The joint effect of surface and interlayer structure on the fluorescence spectrum has been observed and discussed in relation to the position and orientation of RhB(+) cations with respect to the silicate layer. Structural analysis showed that the surface and interlayer structures are different as to the arrangement of RhB(+) cations, and both of them strongly depend on the guest concentration in the intercalation solution and on the method of preparation. The repeated intercalation of montmorillonite by rhodamine B used in the present work allowed obtaining RhB-montmorillonite in the maximum degree of ion exchange for every sample.


Assuntos
Bentonita/química , Rodaminas/química , Fluorescência , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Propriedades de Superfície
8.
J Mol Model ; 18(1): 367-76, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21537960

RESUMO

Ab initio and molecular simulation methods were used in calculations of the neutral individual betulin molecule, and molecular simulations were used to optimize the betulin molecule immersed in various amounts of water. Individual betulin was optimized in different force fields to find the one exhibiting best agreement with ab initio calculations obtained in the Gaussian03 program. Dihedral torsions of active groups of betulin were determined for both procedures, and related calculated structures were compared successfully. The selected force field was used for subsequent optimization of betulin in a water environment, and a conformational search was performed using quench molecular dynamics. The total energies of betulin and its interactions in water bulk were calculated, and the influence of water on betulin structure was investigated.


Assuntos
Simulação de Dinâmica Molecular , Triterpenos/química , Água/química , Simulação por Computador , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Triterpenos/síntese química
9.
J Colloid Interface Sci ; 377(1): 58-63, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22520213

RESUMO

ZnS nanoparticles were precipitated in aqueous dispersions of cationic surfactant cetyltrimethylammonium bromide (CTAB). The sphere radii of ZnS nanoparticles calculated by using band-gap energies steeply decreased from 4.5 nm to 2.2 nm within CTAB concentrations of 0.4-1.5 mmol L(-1). Above the concentration of 1.5 mmol L(-1), the radii were stabilized at R=2.0 nm and increased up to R=2.5 nm after 24 h. The hydrodynamic diameters of CTAB-ZnS structures observed by the dynamic light scattering (DLS) method ranged from 130 nm to 23 nm depending on CTAB concentrations of 0.5-1.5 mmol L(-1). The complex structures were observed by transmission electron microscopy (TEM). At the higher CTAB concentrations, ZnS nanoparticles were surrounded by CTA(+) bilayers forming positively charged micelles with the diameter of 10nm. The positive zeta-potentials of the micelles and their agglomerates were from 16 mV to 33 mV. Wurtzite and sphalerite nanoparticles with R=2.0 nm and 2.5 nm covered by CTA(+) were modeled with and without water. Calculated sublimation energies confirmed that a bilayer arrangement of CTA(+) on the ZnS nanoparticles was preferred to a monolayer.


Assuntos
Compostos de Cetrimônio/química , Nanopartículas/química , Tensoativos/química , Sulfato de Zinco/química , Cetrimônio , Precipitação Química , Luz , Modelos Moleculares , Tamanho da Partícula , Espalhamento de Radiação , Espectrofotometria Ultravioleta , Propriedades de Superfície
10.
J Mol Model ; 17(10): 2569-74, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21229368

RESUMO

Invoking the known link between impact sensitivity and compressibility, we have expanded upon an earlier preliminary study of the significance of the available free space per molecule in the unit cell, ΔV. We express ΔV as V(eff) - V(int), where V(eff) corresponds to zero free space, V(eff) = molecular mass/density. V(int) is the intrinsic gas phase molecular volume. We demonstrate that V(int) can be appropriately defined as the volume enclosed by the 0.003 au contour of the molecule's electronic density; this produces packing coefficients that have the range and average value found crystallographically. Measured impact sensitivities show an overall tendency to increase as ΔV becomes larger. For nitramines, the dependence upon ΔV is rather weak; we interpret this as indicating that a single overriding factor dominates their initiation mechanism, e.g., N-NO(2) rupture. (An analogous situation appears to hold for many organic azides.) In addition to the conceptual significance of identifying ΔV as a factor in impact sensitivity, the present results allow rough estimates of relative sensitivities that are not known.


Assuntos
Substâncias Explosivas/química , Modelos Teóricos
11.
J Mol Model ; 16(5): 895-901, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19784678

RESUMO

We have investigated the possibility of a link between the impact sensitivities of energetic compounds and the space available to their molecules in their crystal lattices. As a measure of this space, we use Delta V=V(eff)-V(0.002), where V(eff) is the effective molecular volume obtained from the crystal density and V(0.002) is that enclosed by the 0.002 au contour of the molecule's gas phase electronic density, determined computationally. When experimental impact sensitivity was plotted against Delta V for a series of 20 compounds, the nitramines formed a separate group showing little dependence upon Delta V. Their impact sensitivities correlate well with an anomalous imbalance in the electrostatic potentials on their molecular surfaces, which is characteristic of energetic compounds in general. The imbalance is symptomatic of the weakness of the N-NO(2) bonds, caused by depletion of electronic charge. The impact sensitivities of non-nitramines, on the other hand, depend much more strongly upon Delta V, and can be quite effectively related to it if an electrostatically-based correction term is included.


Assuntos
Compostos de Anilina/química , Antígenos/química , Nitrobenzenos/química , Cristalografia por Raios X , Eletrônica/métodos , Íons/química , Sensibilidade e Especificidade
12.
J Mol Model ; 16(2): 223-33, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19575247

RESUMO

Molecular modeling in combination with powder X-ray diffraction (XRD) provided new information on the organization of the interlayer space of Mg-Al layered double hydroxide (LDH) containing intercalated porphyrin anions [5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS)]. Anion-exchange and rehydration procedures were used for the preparation of TPPS-containing LDH with an Mg/Al molar ratio of 2. Molecular modeling was carried out in the Cerius(2) and Materials Studio modeling environment. Three types of models were created in order to simulate the experimental XRD patterns of LDH intercalates with a TPPS loading of 70-80% with respect to the theoretical anion exchange capacity (AEC). The models represent single-phase systems with a 100% TPPS loading in the interlayer space (Type 1) and models represent the coexistence of two phases corresponding to the total exchange from 75 to 92% (Type 2). To cover other possible arrangements, models with the coexistence of both TPPS and NO(3)(-) anions in the same interlayer space were calculated (Type 3). The models are described and compared with experimental data. In all cases, guest TPPS anions are tilted with respect to the hydroxide layers, and are horizontally shifted to each other by up to one-half of the TPPS diameter. According to the energy characteristics and simulated XRD, the most probable arrangement is of Type 2, where some layers are saturated with TPPS anions and others are filled with original NO(3)(-) anions.


Assuntos
Alumínio/química , Hidróxidos/química , Magnésio/química , Porfirinas/química , Ânions , Simulação por Computador , Estrutura Molecular , Difração de Raios X
13.
J Mol Model ; 15(11): 1391-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19418076

RESUMO

The surface area of various types of montmorillonites (MMT) with different values of layer charge plays a very important role in surface arrangement of methylene blue cations (MB). Photoluminescence measurements can be strongly or partially influenced by this surface arrangement of cations. For these reasons and on the basis of our previous results, molecular simulations were performed for various types of montmorillonites covered with methylene blue cations. Adsorption of methylene blue cations on Na-Wyoming MMT surface is different from Ca-Cheto MMT. In the case of Wyoming with a lower layer charge, MB cations lie parallel to the silicate layer for all investigated samples. On the other hand, Cheto surface is covered with a higher amount of MB cations. The results obtained from molecular modeling indicate that MB lies parallel to low loading case and become tilted with respect to layer for a higher loading. Moreover, a higher amount of MB cations covering the silicate layer are much less energy-stable. A higher loading of MB cations leads to aggregates but at low loading MB cations degrade to monomers.


Assuntos
Bentonita/química , Azul de Metileno/química , Modelos Moleculares , Cátions/química , Propriedades de Superfície , Termodinâmica , Água/química
14.
J Mol Model ; 14(12): 1119-29, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18682992

RESUMO

The structure of pyrenetetrasulfonate intercalated with hydrotalcite, having the formula [Zn(0.68)Al(0.32)(OH)(2)][(C(16)H(6)O(12)S(4))(0.08) . x H(2)O], was proposed based on molecular simulations combined with experimental data (X-ray powder diffraction, thermogravimetry). Calculations were done for samples kept at various relative humidities (0%, 84%, 98%). The appropriate models were selected from comparison of calculated and measured diffraction patterns. Modelling revealed the arrangement of pyrenetetrasulfonate anions, and the positions and the amount of water molecules in the interlayer space of the host structure. The results confirmed a large variability in the arrangement of the guest species. In the sample without water molecules (0% RH), pyrenetetrasulfonate anions formed a layer at the centre of the interlayer distance. For the sample kept at 84% RH, the anions formed two layers at the thirds of the interlayer. For the sample kept at 98% RH, the anions became tilted with respect to the layered double hydroxides (LDH) layers and are less organised. Water molecules were arranged in three distinct planes: one in the middle and two at the quarters of interlayer distance. The number of water molecules obtained by the modelling basically agrees with the water content as measured by thermogravimetry.


Assuntos
Hidróxido de Alumínio/química , Hidróxido de Magnésio/química , Modelos Moleculares , Pirenos/química , Ânions/química , Simulação por Computador , Hidróxidos/química , Difração de Raios X , Zinco/química
15.
J Mol Model ; 9(3): 195-205, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12698324

RESUMO

A strategy for the structure analysis of intercalated layer silicates based on a combination of modeling (i.e. force field calculations) and experiment is presented. Modeling in conjunction with experiment enables us to analyze the disordered intercalated structures of layer silicates where conventional diffraction analysis fails. Experiment plays a key role in the modeling strategy and in corroboration of the modeling results. X-ray powder diffraction and IR spectroscopy were found to be very useful complementary experiments to molecular modeling. Molecular mechanics and molecular dynamics simulations were carried out in the Cerius2 and Materials Studio modeling environments. An overview is given of the structures of layer silicates, especially smectites intercalated with various inorganic and organic guest species. Special attention is paid to the ordering of guests in the interlayer space, as it is important for the practical applications of these intercalates, where the interlayer porosity, photofunctions, etc. must be controlled. Figure Structure of montmorillonite intercalated with octadecylamine via ion-dipole interaction with the maximum concentration of guests corresponding to the monolayer arrangement of guests with basal spacing 33.3 A. The Na cations remaining in the interlayer are visualized as pink balls


Assuntos
Modelos Moleculares , Rodaminas/química , Silicatos/química , Estrutura Molecular , Espectrofotometria Infravermelho , Difração de Raios X
16.
J Mol Model ; 9(1): 39-46, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12638010

RESUMO

The intercalation process and the structure of montmorillonite intercalated with [rhodamine B]+ cations have been investigated using molecular modeling (molecular mechanics and molecular dynamics simulations), X-ray powder diffraction and IR spectroscopy. The structure of the intercalate depends strongly on the concentration of rhodamine B in the intercalation solution. The presence of two phases in the intercalated structure was revealed by modeling and X-ray powder diffraction: (i) phase with basal spacing 18 A and with bilayer arrangement of guests and (ii) phase with average basal spacing 23 A and with monolayer arrangement of guests. In both phases the monomeric and dimeric arrangement can coexist in the interlayer space. Three types of dimers in the interlayer structure have been found by modeling: (i) H-dimer (head-to-head arrangement) present in the 18 A phase, (ii) sandwich type of the head-to-tail arrangement (present in the 23 A phase) and (iii) J-dimer (head-to-tail arrangement) present in the 23 A phase. Figure Montmorillonite intercalated with rhodamine B cations. On the left: phase 18 A, bilayer dimeric arrangement of guests (H-dimers). On the right: phase 23 A, monolayer arrangement of guests prepared using intercalation solution with a low concentration of rhodamine B


Assuntos
Bentonita/química , Modelos Moleculares , Rodaminas/química , Cátions/química , Dimerização , Conformação Molecular , Estrutura Molecular , Soluções/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X/métodos
17.
J Colloid Interface Sci ; 236(1): 127-131, 2001 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11254337

RESUMO

Molecular mechanics and molecular dynamics simulations combined with X-ray powder diffraction were used in structure investigation of montmorillonite intercalated with cetylpyridinium (CP) and cethyltrimethylammonium (CTA) cations. Molecular modeling revealed the interlayer structure and differences in intercalation behavior of CP and CTA cations in montmorillonite. The experimental and calculated values of basal spacing were in good agreement for both intercalates: in the case of CP-montmorillonite d(exp)=20.59 Å, d(calc)=20.60 Å; for CTA-montmorillonite d(exp)=18.00 Å and d(calc)=18.10 Å. CTA-montmorillonite exhibits significantly higher total sublimation energy and higher host-guest interaction energy than the CP-montmorillonite. The main difference between both intercalates is in charge distribution on the host layers and guest species. The charge transfer from the guest species to the host layer is higher in CTA-montmorillonite than in CP-montmorillonite, and consequently the charge polarization between the host and guest layers is much higher in CTA-montmorillonite. This leads to much stronger host-guest electrostatic interaction in the case of CTA-montmorillonite. Copyright 2001 Academic Press.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA