RESUMO
STUDY DESIGN: A multisite, randomized, controlled, double-blinded phase I/II clinical trial. OBJECTIVE: The purpose of this clinical trial is to evaluate the safety, feasibility and efficacy of pairing noninvasive transcranial direct current stimulation (tDCS) with rehabilitation to promote paretic upper extremity recovery and functional independence in persons living with chronic cervical spinal cord injury (SCI). SETTING: Four-site trial conducted across Cleveland Clinic, Louis Stokes Veterans Affairs Medical Center of Cleveland and MetroHealth Rehabilitation Rehabilitation Institute of Ohio, and Kessler Foundation of New Jersey. METHODS: Forty-four adults (age ≥18 years) with tetraplegia following cervical SCI that occurred ≥1-year ago will participate. Participants will be randomly assigned to receive anodal tDCS or sham tDCS given in combination with upper extremity rehabilitation for 15 sessions each over 3-5 weeks. Assessments will be made twice at baseline separated by at least a 3-week interval, once at end-of-intervention, and once at 3-month follow-up. PRIMARY OUTCOME MEASURE(S): Primary outcome measure is upper extremity motor impairment assessed using the Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP) scale. Functional abilities will be assessed using Capabilities of Upper Extremity-Test (CUE-T), while functional independence and participation restrictions will be evaluated using the self-care domain of Spinal Cord Independent Measure (SCIM), and Canadian Occupational Performance Measure (COPM). SECONDARY OUTCOME MEASURES: Treatment-associated change in corticospinal excitability and output will also be studied using transcranial magnetic stimulation (TMS) and safety (reports of adverse events) and feasibility (attrition, adherence etc.) will also be evaluated. TRIAL REGISTRATION: ClincalTrials.gov identifier NCT03892746. This clinical trial is being performed at four sites within the United States: Cleveland Clinic (lead site), Louis Stokes Cleveland Veterans Affairs Medical Center (VAMC) and MetroHealth Rehabilitation Institute in Ohio, and Kessler Foundation in New Jersey. The U.S. Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office.
Assuntos
Traumatismos da Medula Espinal , Estimulação Transcraniana por Corrente Contínua , Adolescente , Adulto , Canadá , Ensaios Clínicos Fase I como Assunto , Humanos , Estudos Multicêntricos como Assunto , Quadriplegia , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Estimulação Transcraniana por Corrente Contínua/métodos , Resultado do Tratamento , Extremidade SuperiorRESUMO
Transcranial magnetic stimulation (TMS) is used to investigate corticomotor neurophysiology associated with functional recovery in individuals with spinal cord injury (SCI). There is insufficient evidence about test-retest measurement properties of TMS in SCI. Therefore, we investigated test-retest agreement and reliability of TMS metrics representing corticomotor excitability, output, gain, map (representation), and inhibition in individuals with cervical SCI. We collected TMS metrics from biceps and triceps muscles because of the relevance of this proximal muscle pair to the cervical SCI population. Twelve individuals with chronic C3-C6 SCI participated in two TMS sessions separated by ≥ 2 weeks. Measurement agreement was evaluated using t tests, Bland-Altman limits of agreement and relative standard error of measurement (SEM%), while reliability was investigated using intra-class correlation coefficient (ICC) and concordance correlation coefficient (CCC). We calculated the smallest detectable change for all TMS metrics. All TMS metrics except antero-posterior map coordinates and corticomotor inhibition were in agreement upon repeated measurement though limits of agreement were generally large. Measures of corticomotor excitability, output and medio-lateral map coordinates had superior agreement (SEM% < 10). Metrics representing corticomotor excitability, output, and inhibition had good-to-excellent reliability (ICC/CCC > 0.75). The smallest detectable change for TMS metrics was generally high for a single individual, but this value reduced substantially with increase in sample size. We recommend use of corticomotor excitability and recruitment curve area owing to their superior measurement properties. A modest group size (20 or above) yields more stable measurements, which may favor use of TMS metrics in group level modulation after SCI.
Assuntos
Benchmarking , Estimulação Magnética Transcraniana , Potencial Evocado Motor , Humanos , Quadriplegia , Reprodutibilidade dos TestesRESUMO
STUDY DESIGN: Systematic review and meta-analysis. OBJECTIVES: We aimed to investigate the effects of anodal transcranial direct current stimulation (tDCS) against sham on muscle strength and motor functionality after incomplete spinal cord injury (iSCI). SETTING: University of São Paulo, Brazil. METHODS: A preplanned protocol was registered (PROSPERO, CRD42016050444). Pubmed, Embase, Web of Science, Cochrane Central Library and BVS databases were searched independently by two authors up to March 2018. Cochrane Collaboration's Tool was used for the risk of bias assessments. Generic inverse variance and random-effects model were used to calculate pooled effect sizes (ES), 95% confidence intervals (CIs) and p-values in meta-analyses. RESULTS: Six randomized clinical trials met inclusion criteria (n = 78 iSCI individuals) and were included in the meta-analysis. Results showed a marginal significant pooled effect of active tDCS in improving motor functionality with a small ES (SMD = 0.26, 95% CI = -0.00 to 0.53, p = 0.05, I2 = 0%). On the other hand, the pooled effect of active tDCS on muscle strength did not reach statistical significance, in parallel with a small ES (SMD = 0.35, 95% CI = -0.21 to 0.92, p = 0.22, I2 = 0%) when compared with sham tDCS. No significant adverse events were reported. CONCLUSIONS: Overall, there was a significant effect of tDCS in improving motor functionality following iSCI. However, a small ES and the marginal p-value suggest that these results should be interpreted with caution. Further high-quality clinical trials are needed to support or refute the use of tDCS in daily clinical practice.
Assuntos
Força Muscular , Avaliação de Resultados em Cuidados de Saúde , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/reabilitação , Humanos , Força Muscular/fisiologia , Avaliação de Resultados em Cuidados de Saúde/normas , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Estimulação Transcraniana por Corrente ContínuaRESUMO
Noninvasive brain stimulation has been widely used for adults with stroke to improve upper limb motor function. A recent study by Kirton and colleagues (Kirton A, Ciechanski P, Zewdie E, Andersen J, Nettel-Aguirre A, Carlson H, Carsolio L, Herrero M, Quigley J, Mineyko A, Hodge J, Hill M. Neurology 88: 259-267, 2017) applied noninvasive brain stimulation to children with congenital hemiparesis but found no significant effect of noninvasive brain stimulation on motor function. Here, we explore theories about cortical reorganization in both adult and children with hemiparesis and discuss how to improve the approaches of noninvasive brain stimulation to generate optimal motor improvement and development for children with congenital hemiparesis.
Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Adulto , Encéfalo , Criança , Humanos , Modelos Teóricos , Paresia , Extremidade SuperiorRESUMO
Motor overflow, typically described in the context of unimanual movements, refers to the natural tendency for a 'resting' limb to move during movement of the opposite limb and is thought to be influenced by inter-hemispheric interactions and intra-cortical networks within the 'resting' hemisphere. It is currently unknown, however, how motor overflow contributes to asymmetric force coordination task accuracy, referred to as bimanual interference, as there is need to generate unequal forces and corticospinal output for each limb. Here, we assessed motor overflow via motor evoked potentials (MEPs) and the regulation of motor overflow via inter-hemispheric inhibition (IHI) and short-intra-cortical inhibition (SICI) using transcranial magnetic stimulation in the presence of unimanual and bimanual isometric force production. All outcomes were measured in the left first dorsal interosseous (test hand) muscle, which maintained 30% maximal voluntary contraction (MVC), while the right hand (conditioning hand) was maintained at rest, 10, 30, or 70% of its MVC. We have found that as higher forces are generated with the conditioning hand, MEP amplitudes at the active test hand decreased and inter-hemispheric inhibition increased, suggesting reduced motor overflow in the presence of bimanual asymmetric forces. Furthermore, we found that subjects with less motor overflow (i.e., reduced MEP amplitudes in the test hemisphere) demonstrated poorer accuracy in maintaining 30% MVC across all conditions. These findings suggest that motor overflow may serve as an adaptive substrate to support bimanual asymmetric force coordination.
Assuntos
Potencial Evocado Motor/fisiologia , Lateralidade Funcional/fisiologia , Mãos , Córtex Motor/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Análise de Variância , Eletromiografia , Feminino , Humanos , Masculino , Inibição Neural/fisiologia , Tratos Piramidais/fisiologia , Estatística como Assunto , Estimulação Magnética Transcraniana , Adulto JovemRESUMO
OBJECTIVE: A high proportion of patients with stroke do not qualify for repetitive transcranial magnetic stimulation (rTMS) clinical studies due to the presence of metallic stents. The ultimate concern is that any metal could become heated due to eddy currents. However, to date, no clinical safety data are available regarding the risk of metallic stents heating with rTMS. METHODS: We tested the safety of common rTMS protocols (1 Hz and 10 Hz) with stents used commonly in stroke, nitinol and elgiloy. In our method, stents were tested in gelled saline at 2 different locations: at the center and at the lobe of the coil. In addition, at each location, stent heating was evaluated in 3 different orientations: parallel to the long axis of coil, parallel to the short axis of the coil, and perpendicular to the plane of the coil. RESULTS: We found that stents did not heat to more than 1°C with either 1 Hz rTMS or 10 Hz rTMS in any configuration or orientation. Heating in general was greater at the lobe when the stent was oriented perpendicularly. CONCLUSIONS: Our study represents a new method for ex vivo quantification of stent heating. We have found that heating of stents was well below the Food and Drug Administration standards of 2°C. Thus, our study paves the way for in vivo testing of rTMS (≤10 Hz) in the presence of implanted magnetic resonance imaging-compatible stents in animal studies. When planning human safety studies though, geometry, orientation, and location relative to the coil would be important to consider as well.
Assuntos
Ligas , Ligas de Cromo , Cobalto , Procedimentos Endovasculares/instrumentação , Stents , Acidente Vascular Cerebral/terapia , Estimulação Transcraniana por Corrente Contínua , Procedimentos Endovasculares/efeitos adversos , Análise de Falha de Equipamento , Calefação , Humanos , Teste de Materiais , Desenho de Prótese , Falha de Prótese , Medição de Risco , Estimulação Transcraniana por Corrente Contínua/efeitos adversosRESUMO
OBJECTIVE: Noninvasive brain stimulation (NIBS) can augment functional recovery following stroke; however, the technique lacks regulatory approval. Low enrollment in NIBS clinical trials is a key roadblock. Here, we pursued evidence to support the prevailing opinion that enrollment in trials of NIBS is even lower than enrollment in trials of invasive, deep brain stimulation (DBS). METHODS: We compared 2 clinical trials in stroke conducted within a single urban hospital system, one employing NIBS and the other using DBS, (1) to identify specific criteria that generate low enrollment rates for NIBS and (2) to devise strategies to increase recruitment with guidance from DBS. RESULTS: Notably, we found that enrollment in the NIBS case study was 5 times lower (2.8%) than the DBS trial (14.5%) (χ(2) = 20.815, P < .0001). Although the number of candidates who met the inclusion criteria was not different (χ(2) = .04, P < .841), exclusion rates differed significantly between the 2 studies (χ(2) = 21.354, P < .0001). Beyond lack of interest, higher exclusion rates in the NIBS study were largely due to exclusion criteria that were not present in the DBS study, including restrictions for recurrent strokes, seizures, and medications. CONCLUSIONS: Based on our findings, we conclude and suggest that by (1) establishing criteria specific to each NIBS modality, (2) adjusting exclusion criteria based on guidance from DBS, and (3) including patients with common contraindications based on a probability of risk, we may increase enrollment and hence significantly impact the feasibility and generalizability of NIBS paradigms, particularly in stroke.
Assuntos
Encéfalo/fisiologia , Estimulação Encefálica Profunda/métodos , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/terapia , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento , Adulto , Idoso , Ensaios Clínicos como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dor/etiologia , Manejo da Dor , Acidente Vascular Cerebral/complicações , Adulto JovemRESUMO
Stroke results in varying levels of motor and sensory disability that have been linked to the neurodegeneration and neuroinflammation that occur in the infarct and peri-infarct regions within the brain. Specifically, previous research has identified a key role of the corticospinal tract in motor dysfunction and motor recovery post-stroke. Of note, neuroimaging studies have utilized magnetic resonance imaging (MRI) of the brain to describe the timeline of neurodegeneration of the corticospinal tract in tandem with motor function following a stroke. However, research has suggested that alternate motor pathways may also underlie disease progression and the degree of functional recovery post-stroke. Here, we assert that expanding neuroimaging techniques beyond the brain could expand our knowledge of alternate motor pathway structure post-stroke. In the present work, we will highlight findings that suggest that alternate motor pathways contribute to post-stroke motor dysfunction and recovery, such as the reticulospinal and rubrospinal tract. Then we review imaging and electrophysiological techniques that evaluate alternate motor pathways in populations of stroke and other neurodegenerative disorders. We will then outline and describe spinal cord neuroimaging techniques being used in other neurodegenerative disorders that may provide insight into alternate motor pathways post-stroke.
RESUMO
OBJECTIVE: A recent "bimodal-balance recovery" model suggests that contralesional influence varies based on the amount of ipsilesional reserve: inhibitory when there is a large reserve, but supportive when there is a low reserve. Here, we investigated the relationships between contralesional influence (inter-hemispheric inhibition, IHI) and ipsilesional reserve (corticospinal damage/impairment), and also defined a criterion separating subgroups based on the relationships. METHODS: Twenty-four patients underwent assessment of IHI using Transcranial Magnetic Stimulation (ipsilateral silent period method), motor impairment using Upper Extremity Fugl-Meyer (UEFM), and corticospinal damage using Diffusion Tensor Imaging and active motor threshold. Assessments of UEFM and IHI were repeated after 5-week rehabilitation (n = 21). RESULTS: Relationship between IHI and baseline UEFM was quadratic with criterion at UEFM 43 (95%conference interval: 40-46). Patients less impaired than UEFM = 43 showed stronger IHI with more impairment, whereas patients more impaired than UEFM = 43 showed lower IHI with more impairment. Of those made clinically-meaningful functional gains in rehabilitation (n = 14), more-impaired patients showed further IHI reduction. CONCLUSIONS: A criterion impairment-level can be derived to stratify patient-subgroups based on the bimodal influence of contralesional cortex. Contralesional influence also evolves differently across subgroups following rehabilitation. SIGNIFICANCE: The criterion may be used to stratify patients to design targeted, precision treatments.
Assuntos
Lateralidade Funcional/fisiologia , Córtex Motor/fisiopatologia , Inibição Neural/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Imagem de Tensor de Difusão , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/diagnóstico por imagem , Estimulação Magnética TranscranianaRESUMO
Background. Upper-limb chronic stroke hemiplegia was once thought to persist because of disproportionate amounts of inhibition imposed from the contralesional on the ipsilesional hemisphere. Thus, one rehabilitation strategy involves discouraging engagement of the contralesional hemisphere by only engaging the impaired upper limb with intensive unilateral activities. However, this premise has recently been debated and has been shown to be task specific and/or apply only to a subset of the stroke population. Bilateral rehabilitation, conversely, engages both hemispheres and has been shown to benefit motor recovery. To determine what neurophysiological strategies bilateral therapies may engage, we compared the effects of a bilateral and unilateral based therapy using transcranial magnetic stimulation. Methods. We adopted a peripheral electrical stimulation paradigm where participants received 1 session of bilateral contralaterally controlled functional electrical stimulation (CCFES) and 1 session of unilateral cyclic neuromuscular electrical stimulation (cNMES) in a repeated-measures design. In all, 15 chronic stroke participants with a wide range of motor impairments (upper extremity Fugl-Meyer score: 15 [severe] to 63 [mild]) underwent single 1-hour sessions of CCFES and cNMES. We measured whether CCFES and cNMES produced different effects on interhemispheric inhibition (IHI) to the ipsilesional hemisphere, ipsilesional corticospinal output, and ipsilateral corticospinal output originating from the contralesional hemisphere. Results. CCFES reduced IHI and maintained ipsilesional output when compared with cNMES. We found no effect on ipsilateral output for either condition. Finally, the less-impaired participants demonstrated a greater increase in ipsilesional output following CCFES. Conclusions. Our results suggest that bilateral therapies are capable of alleviating inhibition on the ipsilesional hemisphere and enhancing output to the paretic limb.
Assuntos
Terapia por Estimulação Elétrica/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Estudos Cross-Over , Avaliação da Deficiência , Feminino , Lateralidade Funcional , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Córtex Motor/fisiopatologia , Paresia/etiologia , Paresia/reabilitação , Recuperação de Função Fisiológica , Estimulação Magnética TranscranianaRESUMO
OBJECTIVE: Our goal was to determine if pairing transcranial direct current stimulation (tDCS) with rehabilitation for two weeks could augment adaptive plasticity offered by these residual pathways to elicit longer-lasting improvements in motor function in incomplete spinal cord injury (iSCI). DESIGN: Longitudinal, randomized, controlled, double-blinded cohort study. SETTING: Cleveland Clinic Foundation, Cleveland, Ohio, USA. PARTICIPANTS: Eight male subjects with chronic incomplete motor tetraplegia. INTERVENTIONS: Massed practice (MP) training with or without tDCS for 2 hrs, 5 times a week. OUTCOME MEASURES: We assessed neurophysiologic and functional outcomes before, after and three months following intervention. Neurophysiologic measures were collected with transcranial magnetic stimulation (TMS). TMS measures included excitability, representational volume, area and distribution of a weaker and stronger muscle motor map. Functional assessments included a manual muscle test (MMT), upper extremity motor score (UEMS), action research arm test (ARAT) and nine hole peg test (NHPT). RESULTS: We observed that subjects receiving training paired with tDCS had more increased strength of weak proximal (15% vs 10%), wrist (22% vs 10%) and hand (39% vs. 16%) muscles immediately and three months after intervention compared to the sham group. Our observed changes in muscle strength were related to decreases in strong muscle map volume (r=0.851), reduced weak muscle excitability (r=0.808), a more focused weak muscle motor map (r=0.675) and movement of weak muscle motor map (r=0.935). CONCLUSION: Overall, our results encourage the establishment of larger clinical trials to confirm the potential benefit of pairing tDCS with training to improve the effectiveness of rehabilitation interventions for individuals with SCI. TRIAL REGISTRATION: NCT01539109.
Assuntos
Terapia por Exercício/métodos , Quadriplegia/terapia , Traumatismos da Medula Espinal/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora , Contração Muscular , Reabilitação Neurológica/métodos , Projetos Piloto , Quadriplegia/reabilitação , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/reabilitaçãoRESUMO
OBJECTIVE: The standard approach to brain stimulation in stroke is based on the premise that ipsilesional M1 (iM1) is important for motor function of the paretic upper limb, while contralesional cortices compete with iM1. Therefore, the approach typically advocates facilitating iM1 and/or inhibiting contralesional M1 (cM1). But, this approach fails to elicit much improvement in severely affected patients, who on account of extensive damage to ipsilesional pathways, cannot rely on iM1. These patients are believed to instead rely on the undamaged cortices, especially the contralesional dorsal premotor cortex (cPMd), for support of function of the paretic limb. Here, we tested for the first time whether facilitation of cPMd could improve paretic limb function in severely affected patients, and if a cut-off could be identified to separate responders to cPMd from responders to the standard approach to stimulation. METHODS: In a randomized, sham-controlled crossover study, fifteen patients received the standard approach of stimulation involving inhibition of cM1 and a new approach involving facilitation of cPMd using repetitive transcranial magnetic stimulation (rTMS). Patients also received rTMS to control areas. At baseline, impairment [Upper Extremity Fugl-Meyer (UEFMPROXIMAL, max=36)] and damage to pathways [fractional anisotropy (FA)] was measured. We measured changes in time to perform proximal paretic limb reaching, and neurophysiology using TMS. RESULTS: Facilitation of cPMd generated more improvement in severely affected patients, who had experienced greater damage and impairment than a cut-off value of FA (0.5) and UEFMPROXIMAL (26-28). The standard approach instead generated more improvement in mildly affected patients. Responders to cPMd showed alleviation of interhemispheric competition imposed on iM1, while responders to the standard approach showed gains in ipsilesional excitability in association with improvement. CONCLUSIONS: A preliminary cut-off level of severity separated responders for standard approach vs. facilitation of cPMd. SIGNIFICANCE: Cut-offs identified here could help select candidates for tailored stimulation in future studies so patients in all ranges of severity could potentially achieve maximum benefit in function of the paretic upper limb.
Assuntos
Isquemia Encefálica/terapia , Córtex Motor/fisiopatologia , Acidente Vascular Cerebral/terapia , Estimulação Magnética Transcraniana , Idoso , Isquemia Encefálica/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Inibição Neural , Acidente Vascular Cerebral/fisiopatologia , Extremidade Superior/inervação , Extremidade Superior/fisiologiaRESUMO
The pain matrix is comprised of an extensive network of brain structures involved in sensory and/or affective information processing. The thalamus is a key structure constituting the pain matrix. The thalamus serves as a relay center receiving information from multiple ascending pathways and relating information to and from multiple cortical areas. However, it is unknown how thalamocortical networks specific to sensory-affective information processing are functionally integrated. Here, in a proof-of-concept study in healthy humans, we aimed to understand this connectivity using transcranial direct current stimulation (tDCS) targeting primary motor (M1) or dorsolateral prefrontal cortices (DLPFC). We compared changes in functional connectivity (FC) with DLPFC tDCS to changes in FC with M1 tDCS. FC changes were also compared to further investigate its relation with individual's baseline experience of pain. We hypothesized that resting-state FC would change based on tDCS location and would represent known thalamocortical networks. Ten right-handed individuals received a single application of anodal tDCS (1 mA, 20 min) to right M1 and DLPFC in a single-blind, sham-controlled crossover study. FC changes were studied between ventroposterolateral (VPL), the sensory nucleus of thalamus, and cortical areas involved in sensory information processing and between medial dorsal (MD), the affective nucleus, and cortical areas involved in affective information processing. Individual's perception of pain at baseline was assessed using cutaneous heat pain stimuli. We found that anodal M1 tDCS and anodal DLPFC tDCS both increased FC between VPL and sensorimotor cortices, although FC effects were greater with M1 tDCS. Similarly, anodal M1 tDCS and anodal DLPFC tDCS both increased FC between MD and motor cortices, but only DLPFC tDCS modulated FC between MD and affective cortices, like DLPFC. Our findings suggest that M1 stimulation primarily modulates FC of sensory networks, whereas DLPFC stimulation modulates FC of both sensory and affective networks. Our findings when replicated in a larger group of individuals could provide useful evidence that may inform future studies on pain to differentiate between effects of M1 and DLPFC stimulation. Notably, our finding that individuals with high baseline pain thresholds experience greater FC changes with DLPFC tDCS implies the role of DLPFC in pain modulation, particularly pain tolerance.
Assuntos
Córtex Motor/fisiologia , Vias Neurais/fisiologia , Percepção da Dor/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Estudos Cross-Over , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Método Simples-CegoRESUMO
BACKGROUND: Recruitment curves (RCs) acquired using transcranial magnetic stimulation are commonly used in stroke to study physiologic functioning of corticospinal tracts (CST) from M1. However, it is unclear whether CSTs from higher motor cortices contribute as well. OBJECTIVE: To explore whether integrity of CST from higher motor areas, besides M1, relates to CST functioning captured using RCs. METHODS: RCs were acquired for a paretic hand muscle in patients with chronic stroke. Metrics describing gain and overall output of CST were collected. CST integrity was defined by diffusion tensor imaging. For CST emerging from M1 and higher motor areas, integrity (fractional anisotropy) was evaluated in the region of the posterior limb of the internal capsule, the length of CST and in the region of the stroke lesion. RESULTS: We found that output and gain of RC was related to integrity along the length of CST emerging from higher motor cortices but not the M1. CONCLUSIONS: Our results suggest that RC parameters in chronic stroke infer function primarily of CST descending from the higher motor areas but not M1. RCs may thus serve as a simple, in-expensive means to assess re-mapping of alternate areas that is generally studied with resource-intensive neuroimaging in stroke.
RESUMO
It is well known that corticomotor excitability is altered during the post-exercise depression following fatigue within the primary motor cortex (M1). However, it is currently unknown whether corticomotor reorganization following muscle fatigue differs between magnitudes of force and whether corticomotor reorganization occurs measured with transcranial magnetic stimulation (TMS). Fifteen young healthy adults (age 23.8±1.4, 8 females) participated in a within-subjects, repeated measures design study, where they underwent three testing sessions separated by one-week each. Subjects performed separate sessions of each: low-force isometric contraction (30% maximal voluntary contraction [MVC]), high-force isometric contraction (95% MVC) of the first dorsal interosseous (FDI) muscle until self-perceived exhaustion, as well as one session of a 30-min rest as a control. We examined changes in corticomotor map area, excitability and location of the FDI representation in and around M1 using TMS. The main finding was that following low-force, but not high-force fatigue (HFF) corticomotor map area and excitability reduced [by 3cm(2) (t(14)=-2.94, p=0.01) and 56% respectively t(14)=-4.01, p<0.001)]. Additionally, the region of corticomotor excitability shifted posteriorly (6.4±2.5mm) (t(14)=-6.33, p=.019). Corticomotor output became less excitable particularly in regions adjoining M1. Overall, post-exercise depression is present in low-force, but not for HFF. Further, low-force fatigue (LFF) results in a posterior shift in corticomotor output. These changes may be indicative of increased sensory feedback from the somatosensory cortex during the recovery phase of fatigue.
Assuntos
Exercício Físico , Contração Isométrica , Córtex Motor/fisiologia , Fadiga Muscular , Adulto , Eletromiografia , Potencial Evocado Motor , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana , Adulto JovemRESUMO
Despite the promising potential of intracortical microelectrodes, current designs suffer from short functional lifetimes, due in large part to the neuroinflammatory response to the implanted devices. An increasing body of literature is beginning to link neuroinflammatory-mediated oxidative damage to both the loss of neuronal structures around the implanted microelectrodes, and the degradation/corrosion of electrode materials. The goal of this viewpoint paper was to summarize the current progress toward understanding the role of oxidative damage to neurons and microelectrodes. Further, we seek to highlight the initial antioxidative approaches to mitigate oxidative damage, as well as suggest how current advances in macromolecular science for various applications may play a distinct role in enabling intracortical microelectrodes as reliable choices for long-term neuroprosthetic applications.
RESUMO
Despite showing early promise, several recent clinical trials of noninvasive brain stimulation (NIBS) failed to augment rehabilitative outcomes of the paretic upper limb. This article addresses why pairing NIBS with unilateral approaches is weakly generalizable to patients in all ranges of impairments. The article also addresses whether alternate therapies are better suited for the more impaired patients, where they may be more feasible and offer neurophysiologic advantages not offered with unilateral therapies. The article concludes by providing insight on how to create NIBS paradigms that are tailored to distinctly augment the effects of therapies across patients with varying degrees of impairment.
Assuntos
Terapia por Estimulação Elétrica/métodos , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral , Estimulação Magnética Transcraniana/métodos , Extremidade Superior/fisiopatologia , Humanos , Acidente Vascular Cerebral/fisiopatologiaRESUMO
OBJECTIVE: Oxidative stress events have been implicated to occur and facilitate multiple failure modes of intracortical microelectrodes. The goal of the present study was to evaluate the ability of a sustained concentration of an anti-oxidant and to reduce oxidative stress-mediated neurodegeneration for the application of intracortical microelectrodes. APPROACH: Non-functional microelectrodes were implanted into the cortex of male Sprague Dawley rats for up to sixteen weeks. Half of the animals received a daily intraperitoneal injection of the natural anti-oxidant resveratrol, at 30 mg kg(-1). The study was designed to investigate the biodistribution of the resveratrol, and the effects on neuroinflammation/neuroprotection following device implantation. MAIN RESULTS: Daily maintenance of a sustained range of resveratrol throughout the implantation period resulted in fewer degenerating neurons in comparison to control animals at both two and sixteen weeks post implantation. Initial and chronic improvements in neuronal viability in resveratrol-dosed animals were correlated with significant reductions in local superoxide anion accumulation around the implanted device at two weeks after implantation. Controls, receiving only saline injections, were also found to have reduced amounts of accumulated superoxide anion locally and less neurodegeneration than controls at sixteen weeks post-implantation. Despite observed benefits, thread-like adhesions were found between the liver and diaphragm in resveratrol-dosed animals. SIGNIFICANCE: Overall, our chronic daily anti-oxidant dosing scheme resulted in improvements in neuronal viability surrounding implanted microelectrodes, which could result in improved device performance. However, due to the discovery of thread-like adhesions, further work is still required to optimize a chronic anti-oxidant dosing regime for the application of intracortical microelectrodes.
Assuntos
Eletrodos Implantados/efeitos adversos , Encefalite/etiologia , Encefalite/prevenção & controle , Microeletrodos/efeitos adversos , Estilbenos/administração & dosagem , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Antioxidantes/administração & dosagem , Doença Crônica , Eletroencefalografia/efeitos adversos , Eletroencefalografia/instrumentação , Encefalite/patologia , Injeções Intraperitoneais , Masculino , Ratos , Ratos Sprague-Dawley , Resveratrol , Resultado do TratamentoRESUMO
PURPOSE: To demonstrate, in a proof-of-concept study, whether potentiating ipsilesional higher motor areas (premotor cortex and supplementary motor area) augments and accelerates recovery associated with constraint induced movement. METHODS: In a randomized, double-blinded pilot clinical study, 12 patients with chronic stroke were assigned to receive anodal transcranial direct current stimulation (tDCS) (nâ=â6) or sham (nâ=â6) to the ipsilesional higher motor areas during constraint-induced movement therapy. We assessed functional and neurophysiologic outcomes before and after 5 weeks of therapy. RESULTS: Only patients receiving tDCS demonstrated gains in function and dexterity. Gains were accompanied by an increase in excitability of the contralesional rather than the ipsilesional hemisphere. CONCLUSIONS: Our proof-of-concept study provides early evidence that stimulating higher motor areas can help recruit the contralesional hemisphere in an adaptive role in cases of greater ipsilesional injury. Whether this early evidence of promise translates to remarkable gains in functional recovery compared to existing approaches of stimulation remains to be confirmed in large-scale clinical studies that can reasonably dissociate stimulation of higher motor areas from that of the traditional primary motor cortices.
Assuntos
Córtex Motor/fisiopatologia , Manipulações Musculoesqueléticas/métodos , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Estimulação Transcraniana por Corrente Contínua/métodos , Idoso , Método Duplo-Cego , Feminino , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/patologia , Destreza Motora/fisiologia , Projetos Piloto , Prognóstico , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/patologia , Estimulação Magnética Transcraniana , Resultado do TratamentoRESUMO
OBJECTIVE: Reproducibility of transcranial magnetic stimulation (TMS) metrics is essential in accurately tracking recovery and disease. However, majority of evidence pertains to reproducibility of metrics for distal upper limb muscles. We investigate for the first time, reliability of corticospinal physiology for a large proximal muscle - the biceps brachii and relate how varying statistical analyses can influence interpretations. METHODS: 14 young right-handed healthy participants completed two sessions assessing resting motor threshold (RMT), motor evoked potentials (MEPs), motor map and intra-cortical inhibition (ICI) from the left biceps brachii. Analyses included paired t-tests, Pearson's, intra-class (ICC) and concordance correlation coefficients (CCC) and Bland-Altman plots. RESULTS: Unlike paired t-tests, ICC, CCC and Pearson's were >0.6 indicating good reliability for RMTs, MEP intensities and locations of map; however values were <0.3 for MEP responses and ICI. CONCLUSIONS: Corticospinal physiology, defining excitability and output in terms of intensity of the TMS device, and spatial loci are the most reliable metrics for the biceps. MEPs and variables based on MEPs are less reliable since biceps receives fewer cortico-motor-neuronal projections. Statistical tests of agreement and associations are more powerful reliability indices than inferential tests. SIGNIFICANCE: Reliable metrics of proximal muscles when translated to a larger number of participants would serve to sensitively track and prognosticate function in neurological disorders such as stroke where proximal recovery precedes distal.