RESUMO
Variations in crown forms promote canopy space-use and productivity in mixed-species forests. However, we have a limited understanding on how this response is mediated by changes in within-tree biomass allocation. Here, we explored the role of changes in tree allometry, biomass allocation and architecture in shaping diversity-productivity relationships (DPRs) in the oldest tropical tree diversity experiment. We conducted whole-tree destructive biomass measurements and terrestrial laser scanning. Spatially explicit models were built at the tree level to investigate the effects of tree size and local neighbourhood conditions. Results were then upscaled to the stand level, and mixture effects were explored using a bootstrapping procedure. Biomass allocation and architecture substantially changed in mixtures, which resulted from both tree-size effects and neighbourhood-mediated plasticity. Shifts in biomass allocation among branch orders explained substantial shares of the observed overyielding. By contrast, root-to-shoot ratios, as well as the allometric relationships between tree basal area and aboveground biomass, were little affected by the local neighbourhood. Our results suggest that generic allometric equations can be used to estimate forest aboveground biomass overyielding from diameter inventory data. Overall, we demonstrate that shifts in tree biomass allocation are mediated by the local neighbourhood and promote DPRs in tropical forests.
Assuntos
Biodiversidade , Árvores , Biomassa , Florestas , Clima TropicalRESUMO
There is increasing evidence that mixed-species forests can provide multiple ecosystem services at a higher level than their monospecific counterparts. However, most studies concerning tree diversity and ecosystem functioning relationships use data from forest inventories (under noncontrolled conditions) or from very young plantation experiments. Here, we investigated temporal dynamics of diversity-productivity relationships and diversity-stability relationships in the oldest tropical tree diversity experiment. Sardinilla was established in Panama in 2001, with 22 plots that form a gradient in native tree species richness of one-, two-, three- and five-species communities. Using annual data describing tree diameters and heights, we calculated basal area increment as the proxy of tree productivity. We combined tree neighbourhood- and community-level analyses and tested the effects of both species diversity and structural diversity on productivity and its temporal stability. General patterns were consistent across both scales indicating that tree-tree interactions in neighbourhoods drive observed diversity effects. From 2006 to 2016, mean overyielding (higher productivity in mixtures than in monocultures) was 25%-30% in two- and three-species mixtures and 50% in five-species stands. Tree neighbourhood diversity enhanced community productivity but the effect of species diversity was stronger and increased over time, whereas the effect of structural diversity declined. Temporal stability of community productivity increased with species diversity via two principle mechanisms: asynchronous responses of species to environmental variability and overyielding. Overyielding in mixtures was highest during a strong El Niño-related drought. Overall, positive diversity-productivity and diversity-stability relationships predominated, with the highest productivity and stability at the highest levels of diversity. These results provide new insights into mixing effects in diverse, tropical plantations and highlight the importance of analyses of temporal dynamics for our understanding of the complex relationships between diversity, productivity and stability. Under climate change, mixed-species forests may provide both high levels and high stability of production.
Assuntos
Ecossistema , Árvores , Biodiversidade , Florestas , Panamá , Clima TropicalRESUMO
Concentrations of eight elements were measured in Chelonia mydas and Lepidochelys olivacea eggs collected along the Pacific coast of Panama. Manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), and mercury (Hg) concentrations were similar to previous reports of these species from around the world, while lead (Pb) was lower than previous reports. Cd posed the highest health risk to people who regularly eat the eggs, with average consumption rates leading to target hazard quotients (THQ) of up to 0.35 ± 0.15. Our conclusions indicate that current turtle egg consumption in isolated, coastal Pacific communities may pose a health concern for young children, and that youth and young adults should limit their consumption of turtle eggs to reduce their total intake of nonessential metals.
Assuntos
Organismos Aquáticos/química , Contaminação de Alimentos/análise , Metais Pesados/análise , Óvulo/química , Tartarugas , Animais , Monitoramento Ambiental , Humanos , Oceano Pacífico , PanamáRESUMO
Recent studies showed that progesterone stimulates the hypoxic ventilatory response and may reduce apnoea frequency in newborn rats, but so far we still do not know by what mechanisms and whether endogenous progesterone might contribute to respiratory control in neonates. We therefore determined the role of the nuclear progesterone receptor (PR; member of the steroid receptor superfamily) by using wild-type (WT) and PR knock-out (PRKO) mice at postnatal days (P) 1, 4 and 10. We measured the hypoxic ventilatory response (14 and 12% O2, 20 min each) and apnoea frequency in both male and female mice by using whole-body plethysmography. In response to hypoxia, WT male mice had a marked hypoxic ventilatory response at P1 and P10, but not at P4. At P1 and P10, PRKO male mice had a lower hypoxic ventilatory response than WT males. Wild-type female mice had a marked hypoxic ventilatory response at P10, but not at P1 and P4. At P1 and P10, PRKO female mice had a lower hypoxic ventilatory response than WT females. In basal conditions, apnoea frequency was similar in WT and PRKO mice at P1, P4 and P10. During hypoxia, apnoea frequency was higher in WT male mice compared with PRKO male mice and WT female mice at P1. We conclude that PR is a key contributor to the hypoxic ventilatory response in newborn mice, but PR deletion does not increase the frequency of apnoea during normoxia or hypoxia.
Assuntos
Hipóxia/fisiopatologia , Receptores de Progesterona/genética , Mecânica Respiratória , Animais , Animais Recém-Nascidos , Apneia/fisiopatologia , Peso Corporal , Feminino , Genótipo , Masculino , Camundongos , Camundongos Knockout , Consumo de Oxigênio , Pletismografia Total , Testes de Função Respiratória , Caracteres SexuaisRESUMO
One important debate regarding Reducing Emissions from Deforestation and Forest Degradation (REDD+) in developing countries concerns the manner in which its implementation might affect local and indigenous communities. New ways to implement this mechanism without harming the interests of local communities are emerging. To inform this debate, we conducted a qualitative research synthesis to identify best practices (BPs) from people-centered approaches to conservation and rural development, developed indicators of BPs, and invited development practitioners and researchers in the field to assess how the identified BPs are being adopted by community-level REDD+ projects in Latin America. BPs included: local participation in all phases of the project; project supported by a decentralized forest governance framework; project objectives matching community livelihood priorities; project addressing community development needs and expectations; project enhancing stakeholder collaboration and consensus building; project applying an adaptive management approach; and project developing national and local capacities. Most of the BPs were part of the evaluated projects. However, limitations of some of the projects related to decentralized forest governance, matching project objectives with community livelihood priorities, and addressing community development needs. Adaptive management and free and prior informed consent have been largely overlooked. These limitations could be addressed by integrating conservation outcomes and alternative livelihoods into longer-term community development goals, testing nested forest governance approaches in which national policies support local institutions for forest management, gaining a better understanding of the factors that will make REDD+ more acceptable to local communities, and applying an adaptive management approach that allows for social learning and capacity building of relevant stakeholders. Our study provides a framework of BPs and indicators that could be used by stakeholders to improve REDD+ project design, monitoring, and evaluation, which may help reconcile national initiatives and local interests without reinventing the wheel.
Assuntos
Conservação dos Recursos Naturais/métodos , Países em Desenvolvimento , Florestas , Região do Caribe , Conservação dos Recursos Naturais/legislação & jurisprudência , América Latina , Fatores SocioeconômicosRESUMO
Understanding the mechanisms that drive biodiversity-productivity relationships is critical for guiding forest restoration. Although complementarity among trees in the canopy space has been suggested as a key mechanism for greater productivity in mixed-species tree communities, empirical evidence remains limited. Here, we used data from a tropical tree diversity experiment to disentangle the effects of tree species richness and community functional characteristics (community-weighted mean and functional diversity of leaf traits) on canopy space filling, and how these effects are related to overyielding. We found that canopy space filling was largely explained by species identity effects rather than tree diversity effects. Communities with a high abundance of species with a conservative resource-use strategy were those with most densely packed canopies. Across monocultures and mixtures, a higher canopy space filling translated into an enhanced wood productivity. Importantly, most communities (83 %) produced more wood volume than the average of their constituent species in monoculture (i.e. most communities overyielded). Our results show that overyielding increased with leaf functional diversity and positive net biodiversity effects on canopy space filling, which mainly arose due to a high taxonomic diversity. These findings suggest that both taxonomic diversity-enhanced canopy space filling and canopy leaf diversity are important drivers for overyielding in mixed-species forests. Consequently, restoration initiatives should promote stands with functionally diverse canopies by selecting tree species with large interspecific differences in leaf nutrition, as well as leaf and branch morphology to optimize carbon capture in young forest stands.
Assuntos
Biodiversidade , Florestas , Folhas de Planta , Árvores , Clima Tropical , Árvores/fisiologiaRESUMO
Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.
Assuntos
Biodiversidade , Ecossistema , Plantas , Biomassa , Florestas , PradariaRESUMO
The dominant narrative to motivate business actors to take climate actions emphasizes opportunities to increase monetary gains, linking sustainability to the financial goals of these organizations. The prevalence of monetary motivations in sustainability communication among businesses, consultancies, academics and international organizations has made this narrative a truism in the private sector. We conducted an online, real-world, large-n experiment to evaluate the comparative effectiveness of different motivations using narrative communication. We show that non-monetary narratives highlighting prosocial or achievement motivations are 55% more effective in creating responses from businesses than narratives emphasizing monetary gains. These findings are robust across most narrative and audience characteristics, including age and language. Our findings suggest that communication towards business leaders around sustainability can be multi-pronged and should incorporate prosocial and achievement motivations aside from articulating potential financial benefits.
RESUMO
⢠Linking tree diversity to carbon storage can provide further motivation to conserve tropical forests and to design carbon-enriched plantations. Here, we examine the role of tree diversity and functional traits in determining carbon storage in a mixed-species plantation and in a natural tropical forest in Panama. ⢠We used species richness, functional trait diversity, species dominance and functional trait dominance to predict tree carbon storage across these two forests. Then we compared the species ranking based on wood density, maximum diameter, maximum height, and leaf mass per area (LMA) between sites to reveal how these values changed between different forests. ⢠Increased species richness, a higher proportion of nitrogen fixers and species with low LMA increased carbon storage in the mixed-species plantation, while a higher proportion of large trees and species with high LMA increased tree carbon storage in the natural forest. Furthermore, we found that tree species varied greatly in their absolute and relative values between study sites. ⢠Different results in different forests mean that we cannot easily predict carbon storage capacity in natural forests using data from experimental plantations. Managers should be cautious when applying functional traits measured in natural populations in the design of carbon-enriched plantations.
Assuntos
Biodiversidade , Carbono/metabolismo , Ecossistema , Árvores/metabolismo , Clima Tropical , Luz , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/efeitos da radiação , Especificidade da Espécie , Árvores/efeitos da radiaçãoRESUMO
Indigenous Territories (ITs) with less centralized forest governance than Protected Areas (PAs) may represent cost-effective natural climate solutions to meet the Paris agreement. However, the literature has been limited to examining the effect of ITs on deforestation, despite the influence of anthropogenic degradation. Thus, little is known about the temporal and spatial effect of allocating ITs on carbon stocks dynamics that account for losses from deforestation and degradation. Using Amazon Basin countries and Panama, this study aims to estimate the temporal and spatial effects of ITs and PAs on carbon stocks. To estimate the temporal effects, we use annual carbon density maps, matching analysis, and linear mixed models. Furthermore, we explore the spatial heterogeneity of these estimates through geographic discontinuity designs, allowing us to assess the spatial effect of ITs and PAs boundaries on carbon stocks. The temporal effects highlight that allocating ITs preserves carbon stocks and buffer losses as well as allocating PAs in Panama and Amazon Basin countries. The geographic discontinuity designs reveal that ITs' boundaries secure more extensive carbon stocks than their surroundings, and this difference tends to increase towards the least accessible areas, suggesting that indigenous land use in neotropical forests may have a temporarily and spatially stable impact on carbon stocks. Our findings imply that ITs in neotropical forests support Nationally Determined Contributions (NDCs) under the Paris Agreement. Thus, Indigenous peoples must become recipients of countries' results-based payments.
Assuntos
Conservação dos Recursos Naturais , Florestas , Geografia , Mudança ClimáticaRESUMO
A plantation of native trees was established in Panama in 2001 to study the relationship between biodiversity and ecosystem functioning. Five years later, mixed-species plots had experienced enhanced tree growth compared with monocultures. Searching for underlying mechanisms, we developed a neighborhood model isolating size and identity effects. We found that the size of neighbors is, by far, the largest source of variation in individual-tree diameter and height. Size-asymmetric competition appears as a structuring factor in the plantation. The relative growth rate of small trees was significantly lower than that of large trees, and their height and basal diameter were most variable. The 50 smallest trees of the plantation suffered a disproportionate amount of death, and the proportion of small trees was highest in monoculture. Increased biomass allocation to branches for trees growing in three-species plots suggests that competition for light might be taking place. Clearly, local neighborhood plays a central role in determining productivity, suggesting that scale needs to be incorporated in the theoretical development and analysis of biodiversity and ecosystem functioning.
Assuntos
Agricultura , Ecossistema , Árvores/fisiologia , Panamá , Fatores de TempoRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
We developed an analytical method that quantifies the relative contributions of mortality and individual growth to ecosystem function and analysed the results from the first biodiversity experiment conducted in a tropical tree plantation. In Sardinilla, central Panama, over 5000 tree seedlings were planted in monoculture and mixed-species plots. After 5 years of growth, mixed-species plots yielded, on average, 30-58% higher summed tree basal area than did monocultures. Simulation models revealed that the increased yield of mixed-species plots was due mostly to enhancement of individual tree growth. Although c. 1500 trees died during the experiment, mortality was highly species-specific and did not differ consistently between biodiversity treatments. Our results show that the effects of biodiversity on growth and mortality are uncoupled and that biodiversity affects total biomass and potentially self-thinning. The Sardinilla experiment suggests that mixed-species plantings may be a viable strategy for increasing timber yields and preserving biodiversity in tropical tree plantations.
Assuntos
Biodiversidade , Magnoliopsida/fisiologia , Modelos Biológicos , Árvores/fisiologia , Biomassa , Simulação por Computador , Magnoliopsida/crescimento & desenvolvimento , Panamá , Especificidade da Espécie , Análise de Sobrevida , Árvores/crescimento & desenvolvimento , Clima TropicalRESUMO
A pressing question is whether biodiversity can buffer ecosystem functioning against extreme climate events. However, biodiversity loss is expected to occur due to climate change with severe impacts to tropical forests. Using data from a ca. 15 year-old tropical planted forest, we construct models based on a bootstrapping procedure to measure growth and mortality among different species richness treatments in response to extreme climate events. In contrast to higher richness mixtures, in one-species plots we find growth is strongly regulated by climate events and we also find increasingly higher mortality during a consecutive four year dry event. Based on these results together with indicators of loss of resilience, we infer an effect of diversity on critical slowing down. Our work generates new methods, concepts, and applications for global change ecology and emphasises the need for research in the area of biodiversity-ecosystem functioning along environmental stress gradients.
Assuntos
Biodiversidade , Mudança Climática , Ecossistema , Florestas , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Clima Tropical , Dinâmica PopulacionalRESUMO
Land tenure and tenure security are among the most important factors determining the viability and success of Reducing Emissions from Deforestation and Forest Degradation (REDD+) initiatives. The premise of the present paper is that territorial conflicts lead to forest loss and compromise the successful implementation of REDD+. Within this context, the main objectives of this paper are to (i) document, relying on participatory methods, the extent to which land conflicts drive deforestation and (ii) reflect on the legal context of REDD+ examining if, from an Indigenous perspective, it offers tools to resolve such conflicts. We used the Upper Bayano Watershed in eastern Panama as a case study of complex land tenure dynamics, and their effects on forest conservation in the context of REDD+. Combining a range of participatory methods including participatory mapping and forest carbon stock assessment, we estimated the consequences of land invasions on forest carbon stocks. Our analysis shows that invasions of Indigenous territories amounted to 27.6% of the total deforestation for the period of 2001-2014. The situation is of paramount concern in the Embera territory of Majé where 95.4% of total deforestation was caused by colonist invaders. Using and validating the maps made freely available by the Global Forest Change initiative of the University of Maryland, we then developed a reference level for the watershed and carried out a back of the envelop estimation of likely REDD+ revenue, showing its potential to bring much needed income to Indigenous communities striving to protect their forest estate. Our analysis of current legislation in Panama highlights confusion and important legal voids and emphasizes the strong links between land tenure, carbon ownership, and territorial invasions. The options and shortcoming of implementing REDD+ in Indigenous territories is discussed in the conclusion taking our legal review into account.
Assuntos
Conservação dos Recursos Naturais , Florestas , Grupos Populacionais , Poluição do Ar/análise , Dióxido de Carbono/análise , Conservação dos Recursos Naturais/legislação & jurisprudência , Geografia , Humanos , Legislação como Assunto , Panamá , TerritorialidadeRESUMO
The potential benefits of planting trees have generated significant interest with respect to sequestering carbon and restoring other forest based ecosystem services. Reliable estimates of carbon stocks are pivotal for understanding the global carbon balance and for promoting initiatives to mitigate CO2 emissions through forest management. There are numerous studies employing allometric regression models that convert inventory into aboveground biomass (AGB) and carbon (C). Yet the majority of allometric regression models do not consider the root system nor do these equations provide detail on the architecture and shape of different species. The root system is a vital piece toward understanding the hidden form and function roots play in carbon accumulation, nutrient and plant water uptake, and groundwater infiltration. Work that estimates C in forests as well as models that are used to better understand the hydrologic function of trees need better characterization of tree roots. We harvested 40 trees of six different species, including their roots down to 2 mm in diameter and created species-specific and multi-species models to calculate aboveground (AGB), coarse root belowground biomass (BGB), and total biomass (TB). We also explore the relationship between crown structure and root structure. We found that BGB contributes ~27.6% of a tree's TB, lateral roots extend over 1.25 times the distance of crown extent, root allocation patterns varied among species, and that AGB is a strong predictor of TB. These findings highlight the potential importance of including the root system in C estimates and lend important insights into the function roots play in water cycling.
Assuntos
Biomassa , Florestas , Modelos Biológicos , Raízes de Plantas/crescimento & desenvolvimento , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Água SubterrâneaRESUMO
The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity-ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests. In grasslands, biodiversity effects also strengthen due to decreases in functioning in low-diversity communities. Contrasting trends across grasslands are associated with differences in soil characteristics.
Assuntos
Biodiversidade , Florestas , Pradaria , EcossistemaRESUMO
The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and disadvantages of mixed species plantations. The network currently consists of 18 experiments, distributed over 36 sites and five ecoregions. With plantations 1-15 years old, TreeDivNet can already provide relevant data for forest policy and management. In this paper, we highlight some early results on the carbon sequestration and pest resistance potential of more diverse plantations. Finally, suggestions are made for new, innovative experiments in understudied regions to complement the existing network.