Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 185: 116067, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086458

RESUMO

Land-based micropollutants are the largest pollution source of the marine environment acting as the major large-scale chemical sink. Despite this, there are few comprehensive datasets for estimating micropollutant fluxes released to the sea from river mouths. Hence, their dynamics and drivers remain poorly understood. Here, we address this issue by continuous measurements throughout the Rhône River basin (∼100,000 km2) of 1) particulate micropollutant concentrations (persistant organic micropollutants: polychlorobiphenyls [PCBi] and polycyclic aromatic hydrocarbons [PAHs]; emerging compounds: glyphosate and aminomethylphosphonic acid [AMPA]; and trace metal elements [TME]), 2) suspended particulate matter [SPM], and 3) water discharge. From these data, we computed daily fluxes for a wide range of micropollutants (n = 29) over a long-term period (2008-2018). We argue that almost two-thirds of annual micropollutant fluxes are released to the Mediterranean Sea during three short-term periods over the year. The watershed hydro-climatic heterogeneity determines this dynamic by triggering seasonal floods. Unexpectedly, the large deficit of the inter-annual monthly micropollutant fluxes inputs (tributaries and the Upper Rhône River) compared to the output (Beaucaire station) claims for the presence of highly contaminated missing sources of micropollutants in the Rhône River watershed. Based on a SPM-flux-averaged micropollutant concentrations mass balance of the system and the estimates of the relative uncertainty of the missing sources concentration, we assessed their location within the Rhône River catchment. We assume that the potential missing sources of PAHs, PCBi and TME would be, respectively, the metropolitan areas, the alluvial margins of the Rhône River valley, and the unmonitored Cevenol tributaries.


Assuntos
Rios , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Mar Mediterrâneo , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 658: 457-473, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30579203

RESUMO

Long term and high resolution data on water discharge, suspended particulate matter (SPM) and contaminant concentrations in rivers are required for a better understanding of particulate transfers from the continental areas to the seas. The aim of this study was to provide a novel estimation of annual fluxes of SPM and related pollutants in the Rhône River from Lake Geneva to the Mediterranean Sea by combining high frequency or time-integrative monitoring and novel relations between SPM concentration (Cs) and water discharge (Q). At six stations of the Rhône Sediment Observatory (OSR), SPM fluxes were calculated over the 2000-2016 period by combining observational data and Cs-Q relations. Monthly average concentrations of mercury (Hg) and PCB 180 were obtained by analysis of SPM samples collected in time integrative particle traps between 2011 and 2016. These pollutants were selected because of the well documented contamination of the Rhône watershed by these substances. Inter-annual fluxes at the Rhône River outlet averaged 6.6 Mt. yr-1 for SPM, 572 kg yr-1 for Hg and 14 kg yr-1 for PCB 180. The Isère and Durance tributaries were found to be the main contributors of SPM fluxes. Annual SPM budgets were not balanced, suggesting deposition, remobilization of bottom sediments and/or contributions from non-monitored tributaries. The SPM sampled at the outlet was more contaminated than the combined SPM inputs from the monitored tributaries, suggesting that intermediate sources of contamination were not captured in the budget.

3.
Environ Sci Pollut Res Int ; 25(15): 14280-14293, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28844091

RESUMO

Two headwaters located in southwest France were monitored for 3 and 2 years (Auvézère and Aixette watershed, respectively) with two sampling strategies: grab and passive sampling with polar organic chemical integrative sampler (POCIS). These watersheds are rural and characterized by agricultural areas with similar breeding practices, except that the Auvézère watershed contains apple production for agricultural diversification and the downstream portion of the Aixette watershed is in a peri-urban area. The agricultural activities of both are extensive, i.e., with limited supply of fertilizer and pesticides. The sampling strategies used here give specific information: grab samples for higher pesticide content and POCIS for contamination background noise and number of compounds found. Agricultural catchments in small headwater streams are characterized by a background noise of pesticide contamination in the range of 20-70 ng/L, but there may also be transient and high-peak pesticide contamination (2000-3000 ng/L) caused by rain events, poor use of pesticides, and/or the small size of the water body. This study demonstrates that between two specific runoff events, contamination was low; hence the importance of passive sampler use. While the peak pesticide concentrations seen here are a toxicity risk for aquatic life, the pesticide background noise of single compounds do not pose obvious acute nor chronic risks; however, this study did not consider the risk from synergistic "cocktail" effects. Proper tools and sampling strategies may link watershed activities (agricultural, non-agricultural) to pesticides detected in the water, and data from both grab and passive samples can contribute to discussions on environmental effects in headwaters, an area of great importance for biodiversity.


Assuntos
Compostos Orgânicos/química , Praguicidas/análise , Poluentes Químicos da Água/análise , Agricultura , França , Praguicidas/química , Chuva , Poluentes Químicos da Água/química
4.
Talanta ; 148: 572-82, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26653486

RESUMO

The Chemcatcher(®) has been used for a wide range of environmental applications in various media (river water, seawater, sewage water, and treated wastewater). The aim of part B of this review is to compile and discuss the results obtained during these applications, from a screening or quantitative monitoring of water contamination, to a comparison with biomonitoring and bioassays. Special attention will also be paid to, firstly, the influence of environmental factors on analyte uptake and, secondly, the use of Performance and Reference Compounds for the in situ correction of sampling rates.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Poluição da Água/análise , Monitoramento Ambiental/instrumentação , Rios/química , Água do Mar/química
5.
Talanta ; 148: 556-71, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26653485

RESUMO

The passive sampler Chemcatcher(®), which was developed in 2000, can be adapted for various types of water contaminants (e.g., trace metals, polycyclic aromatic hydrocarbons, pesticides and pharmaceutical residues) depending on the materials chosen for the receiving phase and the membrane. The Chemcatcher(®) has been used in numerous research articles in both laboratory experiments and field exposures, and here we review the state-of-the-art in applying this passive sampler. Part A of this review covers (1) the theory upon which the sampler is based (i.e., brief theory, calculation of water concentration, Performance and Reference Compounds), (2) the preparation of the device (i.e., sampler design, choice of the membrane and disk, mounting of the tool), and (3) calibration procedures (i.e., design of the calibration tank, tested parameters, sampling rates).

6.
J Chromatogr A ; 1387: 75-85, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25702082

RESUMO

The aim of this study was first to develop and validate an analytical method for the quantification of 35 polar pesticides and 9 metabolites by ultra-high-performance-liquid chromatography combined with a high resolution time-of-flight mass spectrometer detector (UHPLC-(Q)-TOF). Various analytical conditions were investigated (eluent composition and mass parameters) to optimize analyte responses. Analytical performance (linearity, limit of quantification, and accuracy) was then evaluated and interference in the extract of a passive sampler exposed in freshwater (POCIS: Polar Organic Chemical Integrative Sampler) was studied. The proposed quantification method was validated for 43 compounds with variation of calibration slopes below 10% in environmental matrix. For the unvalidated compound DIA (atrazine-desisopropyl: an atrazine metabolite), interference increased the error of concentration determination (50%). The limits of quantification obtained by combining POCIS and UHPLC-(Q)-TOF for 43 target compounds were between 0.1 (terbuthylazine) and 10.7 ng/L (acetochlor). Secondly, the method was successfully applied during a 14-day POCIS river exposure, and gave concentration values similar to a more commonly used triple quadrupole detector regarding concentration, but allowed for the detection of more compounds. Additionally with the targeted compound quantification, the (Q)-TOF mass spectrometer was also used for screening non-target compounds (other pesticides and pharmaceuticals) in POCIS extracts. Moreover, the acquisition of full scan MS data allowed the identification of the polyethylene glycol (PEG) compounds which gave unresolvable interference to DIA, and thus questions the ability of DIA to be used as performance reference compound (PRC) to determine sampling rates in situ. This study therefore illustrates the potential, and proposes a pathway, of UHPLC-(Q)-TOF combined with POCIS in situ pre-concentration for both quantitative and screening analyses of organic contaminants in water.


Assuntos
Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental/métodos , Espectrometria de Massas , Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Calibragem
7.
Environ Sci Pollut Res Int ; 22(11): 8044-57, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24777319

RESUMO

In this study, the passive sampling strategy was evaluated for its ability to improve water quality monitoring in terms of concentrations and frequencies of quantification of pesticides, with a focus on flux calculation. Polar Organic Chemical Integrative Samplers (POCIS) were successively exposed and renewed at three sampling sites of an extensive French multi-agricultural watershed from January to September 2012. Grab water samples were recovered every 14 days during the same period and an automated sampler collected composite water samples from April to July 2012. Thirty-nine compounds (pesticides and metabolites) were analysed. DEA, diuron and atrazine (banned in France for many years) likely arrived via groundwater whereas dimethanamid, imidacloprid and acetochlor (all still in use) were probably transported via leaching. The comparison of the three sampling strategies showed that the POCIS offers lower detection limits, resulting in the quantification of trace levels of compounds (acetochlor, diuron and desethylatrazine (DEA)) that could not be measured in grab and composite water samples. As a consequence, the frequencies of occurrence were dramatically enhanced with the POCIS compared to spot sample data. Moreover, the integration of flood events led to a better temporal representation of the fluxes when calculated with the POCIS compared to the bimonthly grab sampling strategy. We conclude that the POCIS could be an advantageous alternative to spot sampling, offering better performance in terms of quantification limits and more representative data.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Praguicidas/análise , Rios/química , Manejo de Espécimes/métodos , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Agricultura , Atrazina/análise , Cromatografia Líquida de Alta Pressão , Diurona/análise , Monitoramento Ambiental/métodos , França , Espectrometria de Massas em Tandem , Toluidinas/análise
8.
Sci Total Environ ; 497-498: 282-292, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25137378

RESUMO

In this study, the main current limitations in the application of the Polar Organic Chemical Integrative Sampler (POCIS) in regulatory monitoring programmes were evaluated. POCIS were exposed from March to December by successive periods of 14 days in the River Trec (Lot et Garonne, France) and analysed for 34 pesticides. The study of the uncertainty related to the POCIS data was performed and we concluded that it might be up to 138%, which is higher than European Union requirements but this issue was adequately counterbalanced by the gain of temporal representativeness. Comparison with data from the official monitoring programme from the French Water Agency showed that the POCIS is already suitable for both operational and investigative monitoring. The sampled fraction issue, and then compliance with Environmental Quality Standards, was also addressed. It was confirmed that POCIS samples only the dissolved fraction of dimethenamid and showed that for compounds like atrazine, desethylatrazine and metolachlor, the POCIS concentration is equivalent to the whole water concentration. For dimethenamid, which exhibited a tendency to adsorb on suspended matter, a method was suggested to assess the raw water concentration from the POCIS measure. Finally, an innovative procedure for using passive sampler data for compliance checks in the framework of surveillance monitoring is proposed.


Assuntos
Monitoramento Ambiental/instrumentação , Praguicidas/análise , Poluentes Químicos da Água/análise , Agricultura , Política Ambiental , França
9.
Environ Pollut ; 192: 52-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24886969

RESUMO

The use of the Diffusive Gradient in Thin Film sampler (DGT) as a monitoring tool for regulatory programs is currently evaluated. In this context, the impact of commonly followed procedures on the accuracy of DGT-labile As, Cd, Cu, and Ni quantification was studied. Initial sampler contamination yields to define quantification limits instead of using blank subtraction, thus avoiding artifact concentrations. Not considering the alteration of element diffusion by the filter membrane leads to significant underestimation. However, diffusion coefficients determined on a non-fouled membrane were found to be suitable for the studied site, making it possible to use data from the literature. When diffusive boundary layer formation is neglected, no loss of accuracy is recorded provided the layer is thinner than 0.5 mm. Finally, exploration of potential biases allowed initiating a framework that might help limit inaccuracies in DGT-labile concentration estimation and interpretation, especially in a low contamination context.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/química , Metais/análise , Poluentes Químicos da Água/análise , Arsênio/análise , Cádmio/análise , Cobre/análise , Difusão , Monitoramento Ambiental/instrumentação , Níquel/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA