Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Neuroimage ; 282: 120362, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37722605

RESUMO

Mapping the chimpanzee brain connectome and comparing it to that of humans is key to our understanding of similarities and differences in primate evolution that occurred after the split from their common ancestor around 6 million years ago. In contrast to studies on macaque species' brains, fewer studies have specifically addressed the structural connectivity of the chimpanzee brain and its comparison with the human brain. Most comparative studies in the literature focus on the anatomy of the cortex and deep nuclei to evaluate how their morphology and asymmetry differ from that of the human brain, and some studies have emerged concerning the study of brain connectivity among humans, monkeys, and apes. In this work, we established a new white matter atlas of the deep and superficial white matter structural connectivity in chimpanzees. In vivo anatomical and diffusion-weighted magnetic resonance imaging (MRI) data were collected on a 3-Tesla MRI system from 39 chimpanzees. These datasets were subsequently processed using a novel fiber clustering pipeline adapted to the chimpanzee brain, enabling us to create two novel deep and superficial white matter connectivity atlases representative of the chimpanzee brain. These atlases provide the scientific community with an important and novel set of reference data for understanding the commonalities and differences in structural connectivity between the human and chimpanzee brains. We believe this study to be innovative both in its novel approach and in mapping the superficial white matter bundles in the chimpanzee brain, which will contribute to a better understanding of hominin brain evolution.


Assuntos
Conectoma , Substância Branca , Humanos , Animais , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Pan troglodytes , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico , Macaca
2.
Cereb Cortex ; 32(10): 2254-2264, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34607352

RESUMO

Neuroimaging evidence implicates structural network-level abnormalities in bipolar disorder (BD); however, there remain conflicting results in the current literature hampered by sample size limitations and clinical heterogeneity. Here, we set out to perform a multisite graph theory analysis to assess the extent of neuroanatomical dysconnectivity in a large representative study of individuals with BD. This cross-sectional multicenter international study assessed structural and diffusion-weighted magnetic resonance imaging data obtained from 109 subjects with BD type 1 and 103 psychiatrically healthy volunteers. Whole-brain metrics, permutation-based statistics, and connectivity of highly connected nodes were used to compare network-level connectivity patterns in individuals with BD compared with controls. The BD group displayed longer characteristic path length, a weakly connected left frontotemporal network, and increased rich-club dysconnectivity compared with healthy controls. Our multisite findings implicate emotion and reward networks dysconnectivity in bipolar illness and may guide larger scale global efforts in understanding how human brain architecture impacts mood regulation in BD.


Assuntos
Transtorno Bipolar , Adulto , Transtorno Bipolar/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Estudos Transversais , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Imageamento por Ressonância Magnética/métodos
3.
J Neurosci ; 41(3): 513-523, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33229501

RESUMO

According to global neuronal workspace (GNW) theory, conscious access relies on long-distance cerebral connectivity to allow a global neuronal ignition coding for conscious content. In patients with schizophrenia and bipolar disorder, both alterations in cerebral connectivity and an increased threshold for conscious perception have been reported. The implications of abnormal structural connectivity for disrupted conscious access and the relationship between these two deficits and psychopathology remain unclear. The aim of this study was to determine the extent to which structural connectivity is correlated with consciousness threshold, particularly in psychosis. We used a visual masking paradigm to measure consciousness threshold, and diffusion MRI tractography to assess structural connectivity in 97 humans of either sex with varying degrees of psychosis: healthy control subjects (n = 46), schizophrenia patients (n = 25), and bipolar disorder patients with (n = 17) and without (n = 9) a history of psychosis. Patients with psychosis (schizophrenia and bipolar disorder with psychotic features) had an elevated masking threshold compared with control subjects and bipolar disorder patients without psychotic features. Masking threshold correlated negatively with the mean general fractional anisotropy of white matter tracts exclusively within the GNW network (inferior frontal-occipital fasciculus, cingulum, and corpus callosum). Mediation analysis demonstrated that alterations in long-distance connectivity were associated with an increased masking threshold, which in turn was linked to psychotic symptoms. Our findings support the hypothesis that long-distance structural connectivity within the GNW plays a crucial role in conscious access, and that conscious access may mediate the association between impaired structural connectivity and psychosis.


Assuntos
Encéfalo/fisiopatologia , Vias Neurais/fisiopatologia , Transtornos Psicóticos/fisiopatologia , Transtornos Psicóticos/psicologia , Adolescente , Adulto , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/psicologia , Encéfalo/diagnóstico por imagem , Estado de Consciência , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Mascaramento Perceptivo , Transtornos Psicóticos/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Limiar Sensorial , Substância Branca/diagnóstico por imagem , Substância Branca/fisiopatologia , Adulto Jovem
4.
Neuroimage ; 255: 119197, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417753

RESUMO

Each variation of the cortical folding pattern implies a particular rearrangement of the geometry of the fibers of the underlying white matter. While this rearrangement only impacts the ends of the long pathways, it may affect most of the trajectory of the short bundles. Therefore, mapping the short fibers of the human brain using diffusion-based tractography requires a dedicated strategy to overcome the variability of the folding patterns. In this paper, we propose a fiber-based stratification strategy splitting the population into homogeneous groups for disentangling the superficial white matter bundle organization. This strategy introduces a new refined fiber distance which includes angular considerations for inferring fine-grained atlases of the short bundles surrounding a specific sulcus and a subtractogram distance that quantifies the similitude between fiber sets of two different subjects. The stratification splits the population into groups with similar regional fiber organization using manifold learning. We first successfully test the hypothesis that the main source of variability of the regional fiber organization is the variability of the regional folding pattern. Then, in each group, we proceed with the automatic identification of the most stable bundles, at a higher granularity level than what can be achieved with the non-stratified whole population, enabling the disentanglement of the very variable configuration of the short fibers. Finally, the method searches for bundle correspondence across groups to build a population level atlas. As a proof of concept, the atlas refinement achieved by this strategy is illustrated for the fibers that surround the central sulcus and the superior temporal sulcus using the HCP dataset.


Assuntos
Substância Branca , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Processamento de Imagem Assistida por Computador , Aprendizagem , Fibras Nervosas Mielinizadas , Substância Branca/diagnóstico por imagem
5.
Neuroimage ; 262: 119550, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35944796

RESUMO

The study of short association fibers is still an incomplete task due to their higher inter-subject variability and the smaller size of this kind of fibers in comparison to known long association bundles. However, their description is essential to understand human brain dysfunction and better characterize the human brain connectome. In this work, we present a multi-subject atlas of short association fibers, which was computed using a superficial white matter bundle identification method based on fiber clustering. To create the atlas, we used probabilistic tractography from one hundred subjects from the HCP database, aligned with non-linear registration. The method starts with an intra-subject clustering of short fibers (30-85 mm). Based on a cortical atlas, the intra-subject cluster centroids from all subjects are segmented to identify the centroids connecting each region of interest (ROI) of the atlas. To reduce computational load, the centroids from each ROI group are randomly separated into ten subgroups. Then, an inter-subject hierarchical clustering is applied to each centroid subgroup, followed by a second level of clustering to select the most-reproducible clusters across subjects for each ROI group. Finally, the clusters are labeled according to the regions that they connect, and clustered to create the final bundle atlas. The resulting atlas is composed of 525 bundles of superficial short association fibers along the whole brain, with 384 bundles connecting pairs of different ROIs and 141 bundles connecting portions of the same ROI. The reproducibility of the bundles was verified using automatic segmentation on three different tractogram databases. Results for deterministic and probabilistic tractography data show high reproducibility, especially for probabilistic tractography in HCP data. In comparison to previous work, our atlas features a higher number of bundles and greater cortical surface coverage.


Assuntos
Conectoma , Substância Branca , Encéfalo/diagnóstico por imagem , Análise por Conglomerados , Humanos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Substância Branca/diagnóstico por imagem
6.
Neuroimage ; 245: 118704, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34748954

RESUMO

Fiber tractography is widely used to non-invasively map white-matter bundles in vivo using diffusion-weighted magnetic resonance imaging (dMRI). As it is the case for all scientific methods, proper validation is a key prerequisite for the successful application of fiber tractography, be it in the area of basic neuroscience or in a clinical setting. It is well-known that the indirect estimation of the fiber tracts from the local diffusion signal is highly ambiguous and extremely challenging. Furthermore, the validation of fiber tractography methods is hampered by the lack of a real ground truth, which is caused by the extremely complex brain microstructure that is not directly observable non-invasively and that is the basis of the huge network of long-range fiber connections in the brain that are the actual target of fiber tractography methods. As a substitute for in vivo data with a real ground truth that could be used for validation, a widely and successfully employed approach is the use of synthetic phantoms. In this work, we are providing an overview of the state-of-the-art in the area of physical and digital phantoms, answering the following guiding questions: "What are dMRI phantoms and what are they good for?", "What would the ideal phantom for validation fiber tractography look like?" and "What phantoms, phantom datasets and tools used for their creation are available to the research community?". We will further discuss the limitations and opportunities that come with the use of dMRI phantoms, and what future direction this field of research might take.


Assuntos
Imagem de Tensor de Difusão/métodos , Imagens de Fantasmas , Substância Branca/diagnóstico por imagem , Artefatos , Humanos , Processamento de Imagem Assistida por Computador
7.
Neuroimage ; 236: 118080, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33882348

RESUMO

The brainstem is one of the most densely packed areas of the central nervous system in terms of gray, but also white, matter structures and, therefore, is a highly functional hub. It has mainly been studied by the means of histological techniques, which requires several hundreds of slices with a loss of the 3D coherence of the whole specimen. Access to the inner structure of the brainstem is possible using Magnetic Resonance Imaging (MRI), but this method has a limited spatial resolution and contrast in vivo. Here, we scanned an ex vivo specimen using an ultra-high field (11.7T) preclinical MRI scanner providing data at a mesoscopic scale for anatomical T2-weighted (100 µm and 185 µm isotropic) and diffusion-weighted imaging (300 µm isotropic). We then proposed a hierarchical segmentation of the inner gray matter of the brainstem and defined a set of rules for each segmented anatomical class. These rules were gathered in a freely accessible web-based application, WIKIBrainStem (https://fibratlas.univ-tours.fr/brainstems/index.html), for 99 structures, from which 13 were subdivided into 29 substructures. This segmentation is, to date, the most detailed one developed from ex vivo MRI of the brainstem. This should be regarded as a tool that will be complemented by future results of alternative methods, such as Optical Coherence Tomography, Polarized Light Imaging or histology… This is a mandatory step prior to segmenting multiple specimens, which will be used to create a probabilistic automated segmentation method of ex vivo, but also in vivo, brainstem and may be used for targeting anatomical structures of interest in managing some degenerative or psychiatric disorders.


Assuntos
Atlas como Assunto , Tronco Encefálico/anatomia & histologia , Substância Cinzenta/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Tronco Encefálico/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos
8.
Biomed Eng Online ; 20(1): 72, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34325693

RESUMO

BACKGROUND: The visualization and analysis of brain data such as white matter diffusion tractography and magnetic resonance imaging (MRI) volumes is commonly used by neuro-specialist and researchers to help the understanding of brain structure, functionality and connectivity. As mobile devices are widely used among users and their technology shows a continuous improvement in performance, different types of applications have been designed to help users in different work areas. RESULTS: We present, ABrainVis, an Android mobile tool that allows users to visualize different types of brain images, such as white matter diffusion tractographies, represented as fibers in 3D, segmented fiber bundles, MRI 3D images as rendered volumes and slices, and meshes. The tool enables users to choose and combine different types of brain imaging data to provide visual anatomical context for specific visualization needs. ABrainVis provides high performance over a wide range of Android devices, including tablets and cell phones using medium and large tractography datasets. Interesting visualizations including brain tumors and arteries, along with fiber, are given as examples of case studies using ABrainVis. CONCLUSIONS: The functionality, flexibility and performance of ABrainVis tool introduce an improvement in user experience enabling neurophysicians and neuroscientists fast visualization of large tractography datasets, as well as the ability to incorporate other brain imaging data such as MRI volumes and meshes, adding anatomical contextual information.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem
9.
Neuroimage ; 220: 117070, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32599269

RESUMO

Automated methods that can identify white matter bundles from large tractography datasets have several applications in neuroscience research. In these applications, clustering algorithms have shown to play an important role in the analysis and visualization of white matter structure, generating useful data which can be the basis for further studies. This work proposes FFClust, an efficient fiber clustering method for large tractography datasets containing millions of fibers. Resulting clusters describe the whole set of main white matter fascicles present on an individual brain. The method aims to identify compact and homogeneous clusters, which enables several applications. In individuals, the clusters can be used to study the local connectivity in pathological brains, while at population level, the processing and analysis of reproducible bundles, and other post-processing algorithms can be carried out to study the brain connectivity and create new white matter bundle atlases. The proposed method was evaluated in terms of quality and execution time performance versus the state-of-the-art clustering techniques used in the area. Results show that FFClust is effective in the creation of compact clusters, with a low intra-cluster distance, while keeping a good quality Davies-Bouldin index, which is a metric that quantifies the quality of clustering approaches. Furthermore, it is about 8.6 times faster than the most efficient state-of-the-art method for one million fibers dataset. In addition, we show that FFClust is able to correctly identify atlas bundles connecting different brain regions, as an example of application and the utility of compact clusters.


Assuntos
Imagem de Tensor de Difusão/métodos , Rede Nervosa/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Análise por Conglomerados , Bases de Dados Factuais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Fibras Nervosas Mielinizadas
10.
Mov Disord ; 35(1): 161-170, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710146

RESUMO

BACKGROUND: Progressive supranuclear palsy (PSP) is a neurodegenerative clinically heterogeneous disorder, formal diagnosis being based on postmortem histological brain examination. OBJECTIVE: We aimed to perform a precise in vivo staging of neurodegeneration in PSP using quantitative multimodal MRI. The ability of MRI biomarkers to differentiate PSP from PD was also evaluated. METHODS: Eleven PSP patients were compared to 26 age-matched healthy controls and 51 PD patients. Images were acquired at 3 Tesla (three-dimensional T1 -weighted, diffusion tensor, and neuromelanin-sensitive images) and 7 Tesla (three-dimensional-T2 * images). Regions of interest included the cortical areas, hippocampus, amygdala, basal ganglia, basal forebrain, brainstem nuclei, dentate nucleus, and cerebellum. Volumes, mean diffusivity, and fractional anisotropy were measured. In each region, a threshold value for group categorization was calculated, and four grades of change (0-3) were determined. RESULTS: PSP patients showed extensive volume decreases and diffusion changes in the midbrain, SN, STN, globus pallidus, basal forebrain, locus coeruleus, pedunculopontine nucleus, and dentate nucleus, in close agreement with the degrees of impairment in histological analyses. The predictive factors for the separation of PSP and healthy controls were, in descending order, the neuromelanin-based SN volume; midbrain fractional anisotropy; volumes of the midbrain, globus pallidus, and putamen; and fractional anisotropy in the locus coeruleus. The best predictors for separating PSP from PD were the neuromelanin-based volume in the SN, fractional anisotropy in the pons, volumes of the midbrain and globus pallidus, and fractional anisotropy in the basal forebrain. CONCLUSIONS: These results suggest that it is possible to evaluate brain neurodegeneration in PSP noninvasively, even in small brainstem nuclei, in close agreement with previously published histological data. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Atrofia de Múltiplos Sistemas/patologia , Paralisia Supranuclear Progressiva/patologia , Idoso , Gânglios da Base/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Mesencéfalo/patologia , Pessoa de Meia-Idade , Doença de Parkinson/patologia , Transtornos Parkinsonianos/patologia
11.
Biomed Eng Online ; 19(1): 42, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493483

RESUMO

BACKGROUND: Diffusion MRI is the preferred non-invasive in vivo modality for the study of brain white matter connections. Tractography datasets contain 3D streamlines that can be analyzed to study the main brain white matter tracts. Fiber clustering methods have been used to automatically group similar fibers into clusters. However, due to inter-subject variability and artifacts, the resulting clusters are difficult to process for finding common connections across subjects, specially for superficial white matter. METHODS: We present an automatic method for labeling of short association bundles on a group of subjects. The method is based on an intra-subject fiber clustering that generates compact fiber clusters. Posteriorly, the clusters are labeled based on the cortical connectivity of the fibers, taking as reference the Desikan-Killiany atlas, and named according to their relative position along one axis. Finally, two different strategies were applied and compared for the labeling of inter-subject bundles: a matching with the Hungarian algorithm, and a well-known fiber clustering algorithm, called QuickBundles. RESULTS: Individual labeling was executed over four subjects, with an execution time of 3.6 min. An inspection of individual labeling based on a distance measure showed good correspondence among the four tested subjects. Two inter-subject labeling were successfully implemented and applied to 20 subjects and compared using a set of distance thresholds, ranging from a conservative value of 10 mm to a moderate value of 21 mm. Hungarian algorithm led to a high correspondence, but low reproducibility for all the thresholds, with 96 s of execution time. QuickBundles led to better correspondence, reproducibility and short execution time of 9 s. Hence, the whole processing for the inter-subject labeling over 20 subjects takes 1.17 h. CONCLUSION: We implemented a method for the automatic labeling of short bundles in individuals, based on an intra-subject clustering and the connectivity of the clusters with the cortex. The labels provide useful information for the visualization and analysis of individual connections, which is very difficult without any additional information. Furthermore, we provide two fast inter-subject bundle labeling methods. The obtained clusters could be used for performing manual or automatic connectivity analysis in individuals or across subjects.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Automação , Análise por Conglomerados , Humanos
12.
Neuroimage ; 193: 10-24, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30849528

RESUMO

A GPU-based tool to generate realistic phantoms of the brain microstructure is presented. Using a spherical meshing technique which decomposes each microstructural item into a set of overlapping spheres, the phantom construction is made very fast while reliably avoiding the collisions between items in the scene. This novel method is applied to the construction of human brain white matter microstructural components, namely axonal fibers, oligodendrocytes and astrocytes. The algorithm reaches high values of packing density and angular dispersion for the axonal fibers, even in the case of multiple white matter fiber populations and enables the construction of complex biomimicking geometries including myelinated axons, beaded axons, and glial cells. The method can be readily adapted to model gray matter microstructure.


Assuntos
Algoritmos , Encéfalo , Simulação por Computador , Modelos Neurológicos , Humanos
13.
Neuroimage ; 201: 116007, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31306771

RESUMO

Neuroimaging techniques such as MRI have been widely used to explore the associations between brain areas. Structural connectivity (SC) captures the anatomical pathways across the brain and functional connectivity (FC) measures the correlation between the activity of brain regions. These connectivity measures have been much studied using network theory in order to uncover the distributed organization of brain structures, in particular FC for task-specific brain communication. However, the application of network theory to study FC matrices is often "static" despite the dynamic nature of time series obtained from fMRI. The present study aims to overcome this limitation by introducing a network-oriented analysis applied to whole-brain effective connectivity (EC) useful to interpret the brain dynamics. Technically, we tune a multivariate Ornstein-Uhlenbeck (MOU) process to reproduce the statistics of the whole-brain resting-state fMRI signals, which provides estimates for MOU-EC as well as input properties (similar to local excitabilities). The network analysis is then based on the Green function (or network impulse response) that describes the interactions between nodes across time for the estimated dynamics. This model-based approach provides time-dependent graph-like descriptor, named communicability, that characterize the roles that either nodes or connections play in the propagation of activity within the network. They can be used at both global and local levels, and also enables the comparison of estimates from real data with surrogates (e.g. random network or ring lattice). In contrast to classical graph approaches to study SC or FC, our framework stresses the importance of taking the temporal aspect of fMRI signals into account. Our results show a merging of functional communities over time, moving from segregated to global integration of the network activity. Our formalism sets a solid ground for the analysis and interpretation of fMRI data, including task-evoked activity.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Modelos Neurológicos , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Vias Neurais/fisiologia
14.
Neuroimage ; 197: 527-543, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31063817

RESUMO

More than two decades of functional magnetic resonance imaging (fMRI) of the human brain have succeeded to identify, with a growing level of precision, the neural basis of multiple cognitive skills within various domains (perception, sensorimotor processes, language, emotion and social cognition …). Progress has been made in the comprehension of the functional organization of localized brain areas. However, the long time required for fMRI acquisition limits the number of experimental conditions performed in a single individual. As a consequence, distinct brain localizations have mostly been studied in separate groups of participants, and their functional relationships at the individual level remain poorly understood. To address this issue, we report here preliminary results on a database of fMRI data acquired on 78 individuals who each performed a total of 29 experimental conditions, grouped in 4 cross-domains functional localizers. This protocol has been designed to efficiently isolate, in a single session, the brain activity associated with language, numerical representation, social perception and reasoning, premotor and visuomotor representations. Analyses are reported at the group and at the individual level, to establish the ability of our protocol to selectively capture distinct regions of interest in a very short time. Test-retest reliability was assessed in a subset of participants. The activity evoked by the different contrasts of the protocol is located in distinct brain networks that, individually, largely replicate previous findings and, taken together, cover a large proportion of the cortical surface. We provide detailed analyses of a subset of regions of relevance: the left frontal, left temporal and middle frontal cortices. These preliminary analyses highlight how combining such a large set of functional contrasts may contribute to establish a finer-grained brain atlas of cognitive functions, especially in regions of high functional overlap. Detailed structural images (structural connectivity, micro-structures, axonal diameter) acquired in the same individuals in the context of the ARCHI database provide a promising situation to explore functional/structural interdependence. Additionally, this protocol might also be used as a way to establish individual neurofunctional signatures in large cohorts.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Bases de Dados Factuais , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
15.
Psychother Psychosom ; 88(3): 171-176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30955011

RESUMO

BACKGROUND: MRI studies in patients with bipolar disorder have suggested that lithium is associated with grey matter increases that may underlie its therapeutic effects. However, the relationship between grey matter volume and cellular microstructural changes is not straightforward, as modifications of different cellular compartments of grey matter may be involved. OBJECTIVES: Our aim was to test the hypothesis that dendritic density is higher in patients undergoing lithium therapy than in patients without lithium, using advanced modelling of water diffusion investigated with MRI. METHOD: We included 41 patients and 40 controls matched for age and gender from two sites. All subjects underwent 3T MRI with 3 shells of diffusion. We used neurite orientation dispersion and density imaging to compare the grey matter neurite density between patients undergoing lithium therapy or not and control subjects. RESULTS: We found a significant group effect in the left prefrontal region (p = 0.001, Bonferroni corrected): patients without lithium had a lower frontal neurite density than controls (p = 0.009), while those on lithium had a higher mean neurite density than those without (p < 0.001). Patients on lithium were not different from controls (p = 0.08). CONCLUSIONS: This is the first study to report in vivo evidence of preserved neurite density of the prefrontal cortex in humans associated with lithium intake. Changes of intracellular volume fraction are thought to reflect changes of grey matter microstructural organization. This reinforces the hypothesis of lithium having a positive effect on the neuronal compartment in humans.


Assuntos
Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/fisiopatologia , Substância Cinzenta/efeitos dos fármacos , Substância Cinzenta/patologia , Lítio/uso terapêutico , Neuritos/patologia , Córtex Pré-Frontal/patologia , Adulto , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino
16.
Brain ; 141(12): 3472-3481, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423029

RESUMO

The current theory implying local, short-range overconnectivity in autism spectrum disorder, contrasting with long-range underconnectivity, is based on heterogeneous results, on limited data involving functional connectivity studies, on heterogeneous paediatric populations and non-specific methodologies. In this work, we studied short-distance structural connectivity in a homogeneous population of males with high-functioning autism spectrum disorder and used a novel methodology specifically suited for assessing U-shaped short-distance tracts, including a recently developed tractography-based atlas of the superficial white matter fibres. We acquired diffusion-weighted MRI for 58 males (27 subjects with high-functioning autism spectrum disorder and 31 control subjects) and extracted the mean generalized fractional anisotropy of 63 short-distance tracts. Neuropsychological evaluation included Wechsler Adult Intelligence Scale IV (WAIS-IV), Communication Checklist-Adult, Empathy Quotient, Social Responsiveness Scale and Behaviour Rating Inventory of Executive Function-Adult (BRIEF-A). In contradiction with the models of short-range over-connectivity in autism spectrum disorder, we found that patients with autism spectrum disorder had a significantly decreased anatomical connectivity in a component comprising 13 short tracts compared to controls. Specific short-tract atypicalities in temporal lobe and insula were significantly associated with clinical manifestations of autism spectrum disorder such as social awareness, language structure, pragmatic skills and empathy, emphasizing their importance in social dysfunction. Short-range decreased anatomical connectivity may thus be an important substrate of social deficits in autism spectrum disorder, in contrast with current models.


Assuntos
Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/psicologia , Encéfalo/patologia , Cognição , Comportamento Social , Adulto , Imagem de Difusão por Ressonância Magnética , Empatia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Vias Neurais/patologia , Testes Neuropsicológicos , Substância Branca/patologia
17.
J Neurosci ; 37(43): 10389-10397, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28972123

RESUMO

The synaptosomal-associated protein SNAP25 is a key player in synaptic vesicle docking and fusion and has been associated with multiple psychiatric conditions, including schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder. We recently identified a promoter variant in SNAP25, rs6039769, that is associated with early-onset bipolar disorder and a higher gene expression level in human prefrontal cortex. In the current study, we showed that this variant was associated both in males and females with schizophrenia in two independent cohorts. We then combined in vitro and in vivo approaches in humans to understand the functional impact of the at-risk allele. Thus, we showed in vitro that the rs6039769 C allele was sufficient to increase the SNAP25 transcription level. In a postmortem expression analysis of 33 individuals affected with schizophrenia and 30 unaffected control subjects, we showed that the SNAP25b/SNAP25a ratio was increased in schizophrenic patients carrying the rs6039769 at-risk allele. Last, using genetics imaging in a cohort of 71 subjects, we showed that male risk carriers had an increased amygdala-ventromedial prefrontal cortex functional connectivity and a larger amygdala than non-risk carriers. The latter association has been replicated in an independent cohort of 121 independent subjects. Altogether, results from these multilevel functional studies are bringing strong evidence for the functional consequences of this allelic variation of SNAP25 on modulating the development and plasticity of the prefrontal-limbic network, which therefore may increase the vulnerability to both early-onset bipolar disorder and schizophrenia.SIGNIFICANCE STATEMENT Functional characterization of disease-associated variants is a key challenge in understanding neuropsychiatric disorders and will open an avenue in the development of personalized treatments. Recent studies have accumulated evidence that the SNARE complex, and more specifically the SNAP25 protein, may be involved in psychiatric disorders. Here, our multilevel functional studies are bringing strong evidence for the functional consequences of an allelic variation of SNAP25 on modulating the development and plasticity of the prefrontal-limbic network. These results demonstrate a common genetically driven functional alteration of a synaptic mechanism both in schizophrenia and early-onset bipolar disorder and confirm the shared genetic vulnerability between these two disorders.


Assuntos
Transtorno Bipolar/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Esquizofrenia/genética , Proteína 25 Associada a Sinaptossoma/genética , Adulto , Animais , Transtorno Bipolar/diagnóstico por imagem , Linhagem Celular Tumoral , Feminino , Humanos , Sistema Límbico/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
18.
Proc Natl Acad Sci U S A ; 112(4): 1208-13, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25583500

RESUMO

Identifying potentially unique features of the human cerebral cortex is a first step to understanding how evolution has shaped the brain in our species. By analyzing MR images obtained from 177 humans and 73 chimpanzees, we observed a human-specific asymmetry in the superior temporal sulcus at the heart of the communication regions and which we have named the "superior temporal asymmetrical pit" (STAP). This 45-mm-long segment ventral to Heschl's gyrus is deeper in the right hemisphere than in the left in 95% of typical human subjects, from infanthood till adulthood, and is present, irrespective of handedness, language lateralization, and sex although it is greater in males than in females. The STAP also is seen in several groups of atypical subjects including persons with situs inversus, autistic spectrum disorder, Turner syndrome, and corpus callosum agenesis. It is explained in part by the larger number of sulcal interruptions in the left than in the right hemisphere. Its early presence in the infants of this study as well as in fetuses and premature infants suggests a strong genetic influence. Because this asymmetry is barely visible in chimpanzees, we recommend the STAP region during midgestation as an important phenotype to investigate asymmetrical variations of gene expression among the primate lineage. This genetic target may provide important insights regarding the evolution of the crucial cognitive abilities sustained by this sulcus in our species, namely communication and social cognition.


Assuntos
Agenesia do Corpo Caloso , Transtornos Globais do Desenvolvimento Infantil , Cognição , Situs Inversus , Lobo Temporal , Síndrome de Turner , Adulto , Agenesia do Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/fisiopatologia , Animais , Criança , Transtornos Globais do Desenvolvimento Infantil/diagnóstico por imagem , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Pan troglodytes , Radiografia , Situs Inversus/diagnóstico por imagem , Situs Inversus/fisiopatologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia , Síndrome de Turner/diagnóstico por imagem , Síndrome de Turner/fisiopatologia
19.
Neuroimage ; 147: 703-725, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28034765

RESUMO

Human brain connection map is far from being complete. In particular the study of the superficial white matter (SWM) is an unachieved task. Its description is essential for the understanding of human brain function and the study of pathogenesis triggered by abnormal connectivity. In this work we automatically created a multi-subject atlas of SWM diffusion-based bundles of the whole brain. For each subject, the complete cortico-cortical tractogram is first split into sub-tractograms connecting pairs of gyri. Then intra-subject shape-based fiber clustering performs compression of each sub-tractogram into a set of bundles. Proceeding further with shape-based clustering provides a match of the bundles across subjects. Bundles found in most of the subjects are instantiated in the atlas. To increase robustness, this procedure was performed with two independent groups of subjects, in order to discard bundles without match across the two independent atlases. Finally, the resulting intersection atlas was projected on a third independent group of subjects in order to filter out bundles without reproducible and reliable projection. The final multi-subject diffusion-based U-fiber atlas is composed of 100 bundles in total, 50 per hemisphere, from which 35 are common to both hemispheres.


Assuntos
Atlas como Assunto , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Substância Branca/diagnóstico por imagem , Adulto , Imagem de Tensor de Difusão/normas , Feminino , Humanos , Processamento de Imagem Assistida por Computador/normas , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
20.
Mov Disord ; 32(5): 693-704, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28164375

RESUMO

BACKGROUND: The objective of this study was to investigate pedunculopontine nucleus network dysfunctions that mediate impaired postural control and sleep disorder in Parkinson's disease. METHODS: We examined (1) Parkinson's disease patients with impaired postural control and rapid eye movement sleep behavior disorder (further abbreviated as sleep disorder), (2) Parkinson's disease patients with sleep disorder only, (3) Parkinson's disease patients with neither impaired postural control nor sleep disorder, and (4) healthy volunteers. We assessed postural control with clinical scores and biomechanical recordings during gait initiation. Participants had video polysomnography, daytime sleepiness self-evaluation, and resting-state functional MRIs. RESULTS: Patients with impaired postural control and sleep disorder had longer duration of anticipatory postural adjustments during gait initiation and decreased functional connectivity between the pedunculopontine nucleus and the supplementary motor area in the locomotor network that correlated negatively with the duration of anticipatory postural adjustments. Both groups of patients with sleep disorder had decreased functional connectivity between the pedunculopontine nucleus and the anterior cingulate cortex in the arousal network that correlated with daytime sleepiness. The degree of dysfunction in the arousal network was related to the degree of connectivity in the locomotor network in all patients with sleep disorder, but not in patients without sleep disorder or healthy volunteers. CONCLUSIONS: These results shed light on the functional neuroanatomy of pedunculopontine nucleus networks supporting the clinical manifestation and the interdependence between sleep and postural control impairments in Parkinson's disease. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Giro do Cíngulo/diagnóstico por imagem , Córtex Motor/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Núcleo Tegmental Pedunculopontino/diagnóstico por imagem , Equilíbrio Postural , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Feminino , Neuroimagem Funcional , Giro do Cíngulo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Doença de Parkinson/fisiopatologia , Núcleo Tegmental Pedunculopontino/fisiopatologia , Transtorno do Comportamento do Sono REM/fisiopatologia , Transtornos do Sono-Vigília/diagnóstico por imagem , Transtornos do Sono-Vigília/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA