Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Handb Exp Pharmacol ; 274: 29-56, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35112237

RESUMO

The modern way of life has dramatically affected our biological rhythms. Circadian rhythms, which are generated by an endogenous circadian clock, are observed in a large number of physiological functions including metabolism. Proper peripheral clock synchronization by different signals including appropriate feeding/fasting cycles is essential to coordinate and temporally gate metabolic processes. In this chapter, we emphasize the importance of nutrient sensing by peripheral clocks and highlight the major role of peripheral and central clock communication to locally regulate metabolic processes and ensure optimal energy storage and expenditure. As a consequence, changes in eating behavior and/or bedtime, as occurs upon shift work and jet lag, have direct consequences on metabolism and participate in the increasing prevalence of obesity and associated metabolic diseases such as type 2 diabetes and non-alcoholic fatty liver disease. In this setting, time-restricted feeding has been suggested as an efficient approach to ameliorate metabolic parameters and control body weight.


Assuntos
Relógios Circadianos , Diabetes Mellitus Tipo 2 , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Comportamento Alimentar , Humanos , Obesidade
2.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575881

RESUMO

Cardiovascular diseases (CVD) are still the first cause of death worldwide. Their main origin is the development of atherosclerotic plaque, which consists in the accumulation of lipids and inflammatory leucocytes within the vascular wall of large vessels. Beyond dyslipidemia, diabetes, obesity, hypertension and smoking, the alteration of circadian rhythms, in shift workers for instance, has recently been recognized as an additional risk factor. Accordingly, targeting a pro-atherogenic pathway at the right time window, namely chronotherapy, has proven its efficiency in reducing plaque progression without affecting healthy tissues in mice, thus providing the rationale of such an approach to treat CVD and to reduce drug side effects. Nuclear receptors are transcriptional factors involved in the control of many physiological processes. Among them, Rev-erbs and RORs control metabolic homeostasis, inflammatory processes and the biological clock. In this review, we discuss the opportunity to dampen atherosclerosis progression by targeting such ligand-activated core clock components in a (chrono-)therapeutic approach in order to treat CVD.


Assuntos
Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Relógios Circadianos/genética , Suscetibilidade a Doenças , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Relógios Biológicos/genética , Biomarcadores , Doenças Cardiovasculares/diagnóstico , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Família Multigênica , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Especificidade de Órgãos/genética , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Transdução de Sinais
3.
Gastroenterology ; 154(5): 1449-1464.e20, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29277561

RESUMO

BACKGROUND & AIMS: The innate immune system responds not only to bacterial signals, but also to non-infectious danger-associated molecular patterns that activate the NLRP3 inflammasome complex after tissue injury. Immune functions vary over the course of the day, but it is not clear whether these changes affect the activity of the NLRP3 inflammasome. We investigated whether the core clock component nuclear receptor subfamily 1 group D member 1 (NR1D1, also called Rev-erbα) regulates expression, activity of the NLRP3 inflammasome, and its signaling pathway. METHODS: We collected naïve peritoneal macrophages and plasma, at multiple times of day, from Nr1d1-/- mice and their Nr1d1+/+ littermates (controls) and analyzed expression NLRP3, interleukin 1ß (IL1B, in plasma), and IL18 (in plasma). We also collected bone marrow-derived primary macrophages from these mice. Levels of NR1D1 were knocked down with small hairpin RNAs in human primary macrophages. Bone marrow-derived primary macrophages from mice and human primary macrophages were incubated with lipopolysaccharide (LPS) to induce expression of NLRP3, IL1B, and IL18; cells were incubated with LPS and adenosine triphosphate to activate the NLRP3 complex. We analyzed caspase 1 activity and cytokine secretion. NR1D1 was activated in primary mouse and human macrophages by incubation with SR9009; some of the cells were also incubated with an NLRP3 inhibitor or inhibitors of caspase 1. Nr1d1-/- mice and control mice were given intraperitoneal injections of LPS to induce peritoneal inflammation; plasma samples were isolated and levels of cytokines were measured. Nr1d1-/- mice, control mice, and control mice given injections of SR9009 were given LPS and D-galactosamine to induce fulminant hepatitis and MCC950 to specifically inhibit NLRP3; plasma was collected to measure cytokines and a marker of liver failure (alanine aminotransferase); liver tissues were collected and analyzed by quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry. RESULTS: In peritoneal macrophages, expression of NLRP3 and activation of its complex varied with time of day (circadian rhythm)-this regulation required NR1D1. Primary macrophages from Nr1d1-/- mice and human macrophages with knockdown of NR1D1 had altered expression patterns of NLRP3, compared to macrophages that expressed NR1D1, and altered patterns of IL1B and 1L18 production. Mice with disruption of Nr1d1 developed more-severe acute peritoneal inflammation and fulminant hepatitis than control mice. Incubation of macrophage with the NR1D1 activator SR9009 reduced expression of NLRP3 and secretion of cytokines. Mice given SR9009 developed less-severe liver failure and had longer survival times than mice given saline (control). CONCLUSIONS: In studies of Nr1d1-/- mice and human macrophages with pharmacologic activation of NR1D1, we found NR1D1 to regulate the timing of NLRP3 expression and production of inflammatory cytokines by macrophages. Activation of NR1D1 reduced the severity of peritoneal inflammation and fulminant hepatitis in mice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Ritmo Circadiano , Inflamassomos/metabolismo , Falência Hepática Aguda/prevenção & controle , Fígado/metabolismo , Macrófagos Peritoneais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Caspase 1/metabolismo , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Galactosamina , Predisposição Genética para Doença , Inflamassomos/genética , Inflamassomos/imunologia , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Falência Hepática Aguda/imunologia , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Ativação de Macrófagos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/deficiência , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Peritonite/imunologia , Peritonite/metabolismo , Peritonite/prevenção & controle , Fenótipo , Pirrolidinas/farmacologia , Interferência de RNA , Índice de Gravidade de Doença , Transdução de Sinais , Tiofenos/farmacologia , Fatores de Tempo , Transfecção
4.
Circ Res ; 109(5): 492-501, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21757649

RESUMO

RATIONALE: Activation of liver X receptors (LXRs) inhibits the progression of atherosclerosis and promotes regression of existing lesions. In addition, LXRα levels are high in regressive plaques. Macrophage arginase 1 (Arg1) expression is inversely correlated with atherosclerosis progression and is markedly decreased in foam cells within the lesion. OBJECTIVE: To investigate LXRα regulation of Arg1 expression in cultured macrophages and atherosclerotic regressive lesions. METHODS AND RESULTS: We found that Arg1 expression is enhanced in CD68+ cells from regressive versus progressive lesions in a murine aortic arch transplant model. In cultured macrophages, ligand-activated LXRα markedly enhances basal and interleukin-4-induced Arg1 mRNA and protein expression as well as promoter activity. This LXRα-enhanced Arg1 expression correlates with a reduction in nitric oxide levels. Moreover, Arg1 expression within regressive atherosclerotic plaques is LXRα-dependent, as enhanced expression of Arg1 in regressive lesions is impaired in LXRα-deficient CD68+ cells. LXRα does not bind to the Arg1 promoter but instead promotes the interaction between PU.1 and interferon regulatory factor (IRF)8 transcription factors and induces their binding of a novel composite element. Accordingly, knockdown of either IRF8 or PU.1 strongly impairs LXRα regulation of Arg1 expression in macrophage cells. Finally, we demonstrate that LXRα binds the IRF8 locus and its activation increases IRF8 mRNA and protein levels in these cells. CONCLUSIONS: This work implicates Arg1 in atherosclerosis regression and identifies LXRα as a novel regulator of Arg1 and IRF8 in macrophages. Furthermore, it provides a unique molecular mechanism by which LXRα regulates macrophage target gene expression through PU.1 and IRF8.


Assuntos
Arginase/metabolismo , Fatores Reguladores de Interferon/fisiologia , Macrófagos/metabolismo , Receptores Nucleares Órfãos/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Transativadores/fisiologia , Animais , Arginase/biossíntese , Arginase/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Linhagem Celular , Marcação de Genes/métodos , Loci Gênicos , Fatores Reguladores de Interferon/antagonistas & inibidores , Fatores Reguladores de Interferon/metabolismo , Receptores X do Fígado , Macrófagos/enzimologia , Camundongos , Camundongos Knockout , Receptores Nucleares Órfãos/deficiência , Receptores Nucleares Órfãos/genética , Ligação Proteica/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/antagonistas & inibidores , Transativadores/metabolismo
5.
Diabetes ; 72(8): 1112-1126, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216637

RESUMO

The loss of pancreatic ß-cell identity has emerged as an important feature of type 2 diabetes development, but the molecular mechanisms are still elusive. Here, we explore the cell-autonomous role of the cell-cycle regulator and transcription factor E2F1 in the maintenance of ß-cell identity, insulin secretion, and glucose homeostasis. We show that the ß-cell-specific loss of E2f1 function in mice triggers glucose intolerance associated with defective insulin secretion, altered endocrine cell mass, downregulation of many ß-cell genes, and concomitant increase of non-ß-cell markers. Mechanistically, epigenomic profiling of the promoters of these non-ß-cell upregulated genes identified an enrichment of bivalent H3K4me3/H3K27me3 or H3K27me3 marks. Conversely, promoters of downregulated genes were enriched in active chromatin H3K4me3 and H3K27ac histone marks. We find that specific E2f1 transcriptional, cistromic, and epigenomic signatures are associated with these ß-cell dysfunctions, with E2F1 directly regulating several ß-cell genes at the chromatin level. Finally, the pharmacological inhibition of E2F transcriptional activity in human islets also impairs insulin secretion and the expression of ß-cell identity genes. Our data suggest that E2F1 is critical for maintaining ß-cell identity and function through sustained control of ß-cell and non-ß-cell transcriptional programs. ARTICLE HIGHLIGHTS: ß-Cell-specific E2f1 deficiency in mice impairs glucose tolerance. Loss of E2f1 function alters the ratio of α- to ß-cells but does not trigger ß-cell conversion into α-cells. Pharmacological inhibition of E2F activity inhibits glucose-stimulated insulin secretion and alters ß- and α-cell gene expression in human islets. E2F1 maintains ß-cell function and identity through control of transcriptomic and epigenetic programs.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Humanos , Camundongos , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Histonas/metabolismo , Homeostase/genética , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos Knockout
6.
Med Sci (Paris) ; 38(8-9): 669-678, 2022.
Artigo em Francês | MEDLINE | ID: mdl-36094237

RESUMO

The biological clock is a set of evolutionarily conserved "clock proteins" that generate circadian rhythms in behavior and physiological processes. The clock programs these processes at specific times of the day, allowing the organism to optimize its functions by anticipating predictable daily changes such as day/night, hence sleep/wake or feeding/fasting cycles. Modern lifestyle, i.e., exposure to light at night, shift work and irregular eating patterns and sleep schedules desynchronize the clocks residing in each organ. This dissonance is associated with an increased risk of developing various diseases such as cancer, metabolic, cardiovascular and chronic inflammatory diseases.


Title: Récepteurs nucléaires et rythmes circadiens - Implications dans les maladies inflammatoires. Abstract: L'horloge circadienne programme l'ensemble des processus physiologiques, dont l'activité du système immunitaire, à des moments précis de la journée. Elle permet d'optimiser les fonctions de l'organisme en anticipant les changements quotidiens tels que les cycles jour/nuit. Nos habitudes de vie comme l'exposition à la lumière artificielle ou une prise alimentaire irrégulière désynchronisent cependant cette horloge et provoquent des maladies, par exemple inflammatoires. Au niveau moléculaire, elle consiste en un réseau de facteurs de transcription dont certains sont des récepteurs nucléaires, activables par des ligands. Une meilleure compréhension des rythmes biologiques et du rôle des récepteurs nucléaires de l'horloge circadienne permettrait d'ouvrir un champ thérapeutique nouveau. La chronothérapie qui consiste en l'administration d'un composé pharmacologique au moment de la journée le plus propice, permettrait, en ciblant ces récepteurs, d'optimiser l'efficacité du traitement et d'en réduire les possibles effets secondaires.


Assuntos
Relógios Circadianos , Relógios Circadianos/genética , Ritmo Circadiano/genética , Humanos , Receptores Citoplasmáticos e Nucleares , Sono
7.
Front Immunol ; 13: 773261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126390

RESUMO

Short-chain fatty acids (SCFAs) are metabolites produced mainly by the gut microbiota with a known role in immune regulation. Acetate, the major SCFA, is described to disseminate to distal organs such as lungs where it can arm sentinel cells, including alveolar macrophages, to fight against bacterial intruders. In the current study, we explored mechanisms through which acetate boosts macrophages to enhance their bactericidal activity. RNA sequencing analyses show that acetate triggers a transcriptomic program in macrophages evoking changes in metabolic process and immune effector outputs, including nitric oxide (NO) production. In addition, acetate enhances the killing activity of macrophages towards Streptococcus pneumoniae in an NO-dependent manner. Mechanistically, acetate improves IL-1ß production by bacteria-conditioned macrophages and the latter acts in an autocrine manner to promote NO production. Strikingly, acetate-triggered IL-1ß production was neither dependent of its cell surface receptor free-fatty acid receptor 2, nor of the enzymes responsible for its metabolism, namely acetyl-CoA synthetases 1 and 2. We found that IL-1ß production by acetate relies on NLRP3 inflammasome and activation of HIF-1α, the latter being triggered by enhanced glycolysis. In conclusion, we unravel a new mechanism through which acetate reinforces the bactericidal activity of alveolar macrophages.


Assuntos
Citotoxicidade Imunológica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamassomos/metabolismo , Macrófagos Alveolares/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infecções Pneumocócicas/etiologia , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/imunologia , Acetatos/farmacologia , Animais , Biomarcadores , Citotoxicidade Imunológica/efeitos dos fármacos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Técnicas de Silenciamento de Genes , Glicólise , Interações Hospedeiro-Patógeno/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Consumo de Oxigênio , RNA Interferente Pequeno/genética
8.
JCI Insight ; 7(17)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917173

RESUMO

The sarcoplasmic reticulum (SR) plays an important role in calcium homeostasis. SR calcium mishandling is described in pathological conditions, such as myopathies. Here, we investigated whether the nuclear receptor subfamily 1 group D member (NR1D1, also called REV-ERBα) regulates skeletal muscle SR calcium homeostasis. Our data demonstrate that NR1D1 deficiency in mice impaired sarco/endoplasmic reticulum calcium ATPase-dependent (SERCA-dependent) SR calcium uptake. NR1D1 acts on calcium homeostasis by repressing the SERCA inhibitor myoregulin through direct binding to its promoter. Restoration of myoregulin counteracted the effects of NR1D1 overexpression on SR calcium content. Interestingly, myoblasts from patients with Duchenne muscular dystrophy displayed lower NR1D1 expression, whereas pharmacological NR1D1 activation ameliorated SR calcium homeostasis and improved muscle structure and function in dystrophic mdx/Utr+/- mice. Our findings demonstrate that NR1D1 regulates muscle SR calcium homeostasis, pointing to its therapeutic potential for mitigating myopathy.


Assuntos
Cálcio , Músculo Esquelético , Animais , Cálcio/metabolismo , Homeostase , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Retículo Sarcoplasmático/metabolismo
9.
Nat Commun ; 13(1): 5324, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088459

RESUMO

Tissue injury triggers activation of mesenchymal lineage cells into wound-repairing myofibroblasts, whose unrestrained activity leads to fibrosis. Although this process is largely controlled at the transcriptional level, whether the main transcription factors involved have all been identified has remained elusive. Here, we report multi-omics analyses unraveling Basonuclin 2 (BNC2) as a myofibroblast identity transcription factor. Using liver fibrosis as a model for in-depth investigations, we first show that BNC2 expression is induced in both mouse and human fibrotic livers from different etiologies and decreases upon human liver fibrosis regression. Importantly, we found that BNC2 transcriptional induction is a specific feature of myofibroblastic activation in fibrotic tissues. Mechanistically, BNC2 expression and activities allow to integrate pro-fibrotic stimuli, including TGFß and Hippo/YAP1 signaling, towards induction of matrisome genes such as those encoding type I collagen. As a consequence, Bnc2 deficiency blunts collagen deposition in livers of mice fed a fibrogenic diet. Additionally, our work establishes BNC2 as potentially druggable since we identified the thalidomide derivative CC-885 as a BNC2 inhibitor. Altogether, we propose that BNC2 is a transcription factor involved in canonical pathways driving myofibroblastic activation in fibrosis.


Assuntos
Cirrose Hepática , Miofibroblastos , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genômica , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos , Miofibroblastos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
J Biol Chem ; 285(9): 5983-92, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19955185

RESUMO

The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) is a key regulator of genes implicated in lipid homeostasis and inflammation. PPARalpha trans-activity is enhanced by recruitment of coactivators such as SRC1 and CBP/p300 and is inhibited by binding of corepressors such as NCoR and SMRT. In addition to ligand binding, PPARalpha activity is regulated by post-translational modifications such as phosphorylation and ubiquitination. In this report, we demonstrate that hPPARalpha is SUMOylated by SUMO-1 on lysine 185 in the hinge region. The E2-conjugating enzyme Ubc9 and the SUMO E3- ligase PIASy are implicated in this process. In addition, ligand treatment decreases the SUMOylation rate of hPPARalpha. Finally, our results demonstrate that SUMO-1 modification of hPPARalpha down-regulates its trans-activity through the specific recruitment of corepressor NCoR but not SMRT leading to the differential expression of a subset of PPARalpha target genes. In conclusion, hPPARalpha SUMOylation on lysine 185 down-regulates its trans-activity through the selective recruitment of NCoR.


Assuntos
Correpressor 1 de Receptor Nuclear/metabolismo , PPAR alfa/metabolismo , Proteína SUMO-1/metabolismo , Sítios de Ligação , Linhagem Celular , Proteínas Correpressoras/metabolismo , Regulação da Expressão Gênica , Humanos , Cinética , Lisina/metabolismo , PPAR alfa/fisiologia , Transporte Proteico
11.
Front Endocrinol (Lausanne) ; 12: 630536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716981

RESUMO

The innate immune system is the first line of defense specialized in the clearing of invaders whether foreign elements like microbes or self-elements that accumulate abnormally including cellular debris. Inflammasomes are master regulators of the innate immune system, especially in macrophages, and are key sensors involved in maintaining cellular health in response to cytolytic pathogens or stress signals. Inflammasomes are cytoplasmic complexes typically composed of a sensor molecule such as NOD-Like Receptors (NLRs), an adaptor protein including ASC and an effector protein such as caspase 1. Upon stimulation, inflammasome complex components associate to promote the cleavage of the pro-caspase 1 into active caspase-1 and the subsequent activation of pro-inflammatory cytokines including IL-18 and IL-1ß. Deficiency or overactivation of such important sensors leads to critical diseases including Alzheimer diseases, chronic inflammatory diseases, cancers, acute liver diseases, and cardiometabolic diseases. Inflammasomes are tightly controlled by a two-step activation regulatory process consisting in a priming step, which activates the transcription of inflammasome components, and an activation step which leads to the inflammasome complex formation and the subsequent cleavage of pro-IL1 cytokines. Apart from the NF-κB pathway, nuclear receptors have recently been proposed as additional regulators of this pathway. This review will discuss the role of nuclear receptors in the control of the NLRP3 inflammasome and the putative beneficial effect of new modulators of inflammasomes in the treatment of inflammatory diseases including colitis, fulminant hepatitis, cardiac ischemia-reperfusion and brain diseases.


Assuntos
Inflamassomos/metabolismo , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Humanos , Transdução de Sinais/fisiologia
12.
Front Immunol ; 11: 1630, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849554

RESUMO

The innate immune system senses "non-self" molecules derived from pathogens (PAMPs) as well as endogenous damage-associated molecular patterns (DAMPs) and promotes sterile inflammation that is necessary for injury resolution, tissue repair/regeneration, and homeostasis. The NOD-, LRR- and pyrin domain containing protein 3 (NLRP3) is an innate immune signaling complex whose assembly and activation can be triggered by various signals ranging from microbial molecules to ATP or the abnormal accumulation of crystals, thus leading to IL-1ß and IL-18 maturation and secretion. Deregulation of the NLRP3 signaling cascade is associated with numerous inflammatory and metabolic diseases including rheumatoid arthritis, gout, atherosclerosis or type 2 diabetes. Interestingly, the circadian clock controls numerous inflammatory processes while clock disruption leads to or exacerbates inflammation. Recently, the biological clock was demonstrated to control NLRP3 expression and activation, thereby controlling IL-1ß and IL-18 secretion in diverse tissues and immune cells, particularly macrophages. Circadian oscillations of NLRP3 signaling is lost in models of clock disruption, contributing to the development of peritonitis, hepatitis, or colitis. Sterile inflammation is also an important driver of atherosclerosis, and targeting the production of IL-1ß has proven to be a promising approach for atherosclerosis management in humans. Interestingly, the extent of injury after fulminant hepatitis or myocardial infarction is time-of-day dependent under the control of the clock, and chronotherapy represents a promising approach for the management of pathologies involving deregulation of NLRP3 signaling.


Assuntos
Ritmo Circadiano , Inflamassomos/metabolismo , Transdução de Sinais , Animais , Relógios Circadianos/imunologia , Ritmo Circadiano/imunologia , Suscetibilidade a Doenças , Homeostase , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunidade Inata , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo
13.
Gastroenterology ; 135(2): 689-98, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18565334

RESUMO

BACKGROUND & AIMS: Conversion into bile acids represents an important route to remove excess cholesterol from the body. Rev-erbalpha is a nuclear receptor that participates as one of the clock genes in the control of circadian rhythmicity and plays a regulatory role in lipid metabolism and adipogenesis. Here, we investigate a potential role for Rev-erbalpha in the control of bile acid metabolism via the regulation of the neutral bile acid synthesis pathway. METHODS: Bile acid synthesis and CYP7A1 gene expression were studied in vitro and in vivo in mice deficient for or over expressing Rev-erbalpha. RESULTS: Rev-erbalpha-deficient mice display a lower synthesis rate and an impaired excretion of bile acids into the bile and feces. Expression of CYP7A1, the rate-limiting enzyme of the neutral pathway, is decreased in livers of Rev-erbalpha-deficient mice, whereas adenovirus-mediated hepatic Rev-erbalpha overexpression induces its expression. Moreover, bile acid feeding resulted in a more pronounced suppression of hepatic CYP7A1 expression in Rev-erbalpha-deficient mice. Hepatic expression of E4BP4 and the orphan nuclear receptor small heterodimer partner (SHP), both negative regulators of CYP7A1 expression, is increased in Rev-erbalpha-deficient mice. Promoter analysis and chromatin immunoprecipitation experiments demonstrated that SHP and E4BP4 are direct Rev-erbalpha target genes. Finally, the circadian rhythms of liver CYP7A1, SHP, and E4BP4 messenger RNA levels were perturbed in Rev-erbalpha-deficient mice. CONCLUSIONS: These data identify a role for Rev-erbalpha in the regulatory loop of bile acid synthesis, likely acting by regulating both hepatic SHP and E4BP4 expression.


Assuntos
Ácidos e Sais Biliares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Bile/metabolismo , Linhagem Celular Tumoral , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Ritmo Circadiano , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Fezes/química , Regulação Enzimológica da Expressão Gênica , Humanos , Fígado/enzimologia , Camundongos , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Tempo , Transfecção
14.
Mol Endocrinol ; 22(8): 1797-811, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18511497

RESUMO

A role of the nuclear receptor Rev-erbalpha in the regulation of transcription pathways involving other nuclear receptors is emerging. Indeed, Rev-erbalpha is a negative regulator of transcription by binding to overlapping response elements shared with various nuclear receptors, including the peroxisome proliferator-activated receptors and the retinoid-related orphan receptor alpha (RORalpha). Here, we show that Rev-erbalpha is expressed in primary human macrophages and that its expression is induced by synthetic ligands for the liver X receptors (LXRs), which control cholesterol homeostasis, inflammation, and the immune response in macrophages. LXRalpha binds to a specific response element in the human Rev-erbalpha promoter, thus inducing Rev-erbalpha transcriptional expression. Interestingly, Rev-erbalpha does not influence basal or LXR-regulated cholesterol homeostasis. However, Rev-erbalpha overexpression represses the induction of toll-like receptor (TLR)-4 by LXR agonists, whereas Rev-erbalpha silencing by short interfering RNA results in enhanced TLR-4 expression upon LXR activation. Electrophoretic mobility shift, chromatin immunoprecipitation, and transient transfection experiments demonstrate that Rev-erbalpha represses human TLR-4 promoter activity by binding as a monomer to a RevRE site overlapping with the LXR response element site in the TLR-4 promoter. These data identify Rev-erbalpha as a new LXR target gene, inhibiting LXR-induction of TLR-4 in a negative transcriptional feedback loop, but not cholesterol homeostasis gene expression.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica , Macrófagos/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Sequência de Bases , Células Cultivadas , Colesterol/metabolismo , Dimerização , Retroalimentação Fisiológica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Receptores X do Fígado , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Modelos Genéticos , Dados de Sequência Molecular , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Receptores Nucleares Órfãos , Ligação Proteica/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Elementos de Resposta/genética , Receptor X Retinoide alfa/metabolismo , Receptor 4 Toll-Like/genética , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
15.
Methods Mol Biol ; 1951: 189-207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30825154

RESUMO

The NLRP3 inflammasome is a cellular sensor of danger signals such as extracellular ATP or abnormally accumulating molecules like crystals. Activation of NLRP3 by such compounds triggers a sterile inflammatory response that may be involved in numerous pathologies including rheumatoid arthritis, atherosclerosis, diabetes, and Alzheimer's disease. A better understanding of the mechanisms that govern NLRP3 inflammasome activation is an important step toward the development of novel therapeutic strategies to dampen over-activation of the immune system. Recent findings demonstrate that ligand-activated nuclear receptors regulate the NLRP3 inflammasome pathway, thus representing possible therapeutic targets. It is therefore important to assess the potential of these putative targets in the regulation of the NLRP3 inflammasome activation in the most appropriate pathophysiological models. Fulminant hepatitis (FH) results from massive hepatocyte apoptosis, hemorrhagic necrosis, and inflammation. Low doses of LPS in combination with the specific hepatotoxic agent D-galactosamine (D-GalN) promote liver injury in mice and induce the production of inflammatory cytokines associated with increased NLRP3 protein and caspase 1 activity, thus recapitulating the clinical picture of FH in humans. We provide a simple method to examine the involvement of nuclear receptors in NLRP3-driven fulminant hepatitis, consisting in the induction of FH, in the isolation of liver macrophages, and in the extraction and analysis of RNA content.


Assuntos
Hepatite/etiologia , Hepatite/metabolismo , Inflamassomos/metabolismo , Falência Hepática Aguda/etiologia , Falência Hepática Aguda/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Galactosamina/efeitos adversos , Expressão Gênica , Hepatite/patologia , Humanos , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Lipopolissacarídeos/efeitos adversos , Falência Hepática Aguda/patologia , Camundongos , Transdução de Sinais
16.
Cell Rep ; 29(6): 1410-1418.e6, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693883

RESUMO

Browning induction or transplantation of brown adipose tissue (BAT) or brown/beige adipocytes derived from progenitor or induced pluripotent stem cells (iPSCs) can represent a powerful strategy to treat metabolic diseases. However, our poor understanding of the mechanisms that govern the differentiation and activation of brown adipocytes limits the development of such therapy. Various genetic factors controlling the differentiation of brown adipocytes have been identified, although most studies have been performed using in vitro cultured pre-adipocytes. We investigate here the differentiation of brown adipocytes from adipose progenitors in the mouse embryo. We demonstrate that the formation of multiple lipid droplets (LDs) is initiated within clusters of glycogen, which is degraded through glycophagy to provide the metabolic substrates essential for de novo lipogenesis and LD formation. Therefore, this study uncovers the role of glycogen in the generation of LDs.


Assuntos
Adipócitos Marrons/metabolismo , Adipogenia/genética , Tecido Adiposo Marrom/metabolismo , Embrião de Mamíferos/metabolismo , Glicogênio/metabolismo , Gotículas Lipídicas/metabolismo , Adipócitos Marrons/ultraestrutura , Tecido Adiposo Marrom/embriologia , Tecido Adiposo Marrom/ultraestrutura , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Glicogênio/ultraestrutura , Humanos , Gotículas Lipídicas/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , PPAR gama/genética , PPAR gama/metabolismo , RNA Interferente Pequeno , Transcriptoma
17.
Cell Rep ; 26(4): 984-995.e6, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30673619

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a very common indication for liver transplantation. How fat-rich diets promote progression from fatty liver to more damaging inflammatory and fibrotic stages is poorly understood. Here, we show that disrupting phosphorylation at Ser196 (S196A) in the liver X receptor alpha (LXRα, NR1H3) retards NAFLD progression in mice on a high-fat-high-cholesterol diet. Mechanistically, this is explained by key histone acetylation (H3K27) and transcriptional changes in pro-fibrotic and pro-inflammatory genes. Furthermore, S196A-LXRα expression reveals the regulation of novel diet-specific LXRα-responsive genes, including the induction of Ces1f, implicated in the breakdown of hepatic lipids. This involves induced H3K27 acetylation and altered LXR and TBLR1 cofactor occupancy at the Ces1f gene in S196A fatty livers. Overall, impaired Ser196-LXRα phosphorylation acts as a novel nutritional molecular sensor that profoundly alters the hepatic H3K27 acetylome and transcriptome during NAFLD progression placing LXRα phosphorylation as an alternative anti-inflammatory or anti-fibrotic therapeutic target.


Assuntos
Gorduras na Dieta/efeitos adversos , Receptores X do Fígado/metabolismo , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Animais , Gorduras na Dieta/farmacologia , Receptores X do Fígado/genética , Camundongos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética
18.
J Clin Invest ; 128(3): 910-912, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29457787

RESUMO

Atherosclerosis is a chronic inflammatory disease of the vasculature that is initiated by cholesterol deposition into the arterial wall, which triggers the infiltration of immune and inflammatory cells, including monocytes and macrophages. As atherosclerotic plaques progress, localized hypoxia promotes compensatory angiogenesis from the vasa vasorum. Immature neovessels are prone to leakage, thus destabilizing the plaque and leading to intraplaque hemorrhage. Macrophages with different phenotypes, ranging from classical inflammatory subtypes to alternatively activated antiinflammatory macrophages, have been identified in atherosclerotic lesions. Antiinflammatory hemoglobin-scavenging CD163+ macrophages are present in neovessel- and hemorrhage-rich areas; however, the role of these macrophages in atherogenesis has been unclear. In this issue of the JCI, Guo, Akahori, and colleagues show that CD163+ macrophages promote angiogenesis, vessel permeability, and leucocyte infiltration in human and mouse atherosclerotic lesions through a mechanism involving hemoglobin:haptoglobin/CD163/HIF1α-mediated VEGF induction. This study thus identifies proatherogenic properties of CD163+ macrophages, which previously were thought to be beneficial.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Permeabilidade Capilar , Humanos , Inflamação , Macrófagos , Camundongos
19.
JCI Insight ; 3(9)2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29720572

RESUMO

Metabolic stresses such as dietary energy restriction or physical activity exert beneficial metabolic effects. In the liver, endospanin-1 and endospanin-2 cooperatively modulate calorie restriction-mediated (CR-mediated) liver adaptations by controlling growth hormone sensitivity. Since we found CR to induce endospanin protein expression in skeletal muscle, we investigated their role in this tissue. In vivo and in vitro endospanin-2 triggers ERK phosphorylation in skeletal muscle through an autophagy-dependent pathway. Furthermore, endospanin-2, but not endospanin-1, overexpression decreases muscle mitochondrial ROS production, induces fast-to-slow fiber-type switch, increases skeletal muscle glycogen content, and improves glucose homeostasis, ultimately promoting running endurance capacity. In line, endospanin-2-/- mice display higher lipid peroxidation levels, increased mitochondrial ROS production under mitochondrial stress, decreased ERK phosphorylation, and reduced endurance capacity. In conclusion, our results identify endospanin-2 as a potentially novel player in skeletal muscle metabolism, plasticity, and function.


Assuntos
Metabolismo Energético , Proteínas de Membrana/fisiologia , Músculo Esquelético/metabolismo , Resistência Física/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Autofagia , Restrição Calórica , Plasticidade Celular/genética , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas de Membrana/genética , Camundongos , Mitocôndrias/metabolismo , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Estresse Oxidativo , Fenótipo , Fosforilação , Esforço Físico , RNA Mensageiro/metabolismo
20.
Sci Rep ; 7(1): 14383, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085009

RESUMO

The nuclear receptor Rev-erb-α modulates hepatic lipid and glucose metabolism, adipogenesis and thermogenesis. We have previously demonstrated that Rev-erb-α is also an important regulator of skeletal muscle mitochondrial biogenesis and function, and autophagy. As such, Rev-erb-α over-expression in skeletal muscle or its pharmacological activation improved mitochondrial respiration and enhanced exercise capacity. Here, in gain- and loss-of function studies, we show that Rev-erb-α also controls muscle mass. Rev-erb-α-deficiency in skeletal muscle leads to increased expression of the atrophy-related genes (atrogenes), associated with reduced muscle mass and decreased fiber size. By contrast, in vivo and in vitro Rev-erb-α over-expression results in reduced atrogenes expression and increased fiber size. Finally, Rev-erb-α pharmacological activation blocks dexamethasone-induced upregulation of atrogenes and muscle atrophy. This study identifies Rev-erb-α as a promising pharmacological target to preserve muscle mass.


Assuntos
Atrofia Muscular/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/fisiologia , Adipogenia , Animais , Autofagia , Diferenciação Celular , Fígado/metabolismo , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Doenças Musculares/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Repressoras/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA