Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Parasitol ; 254: 108624, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769835

RESUMO

The blue mussel, Mytilus edulis, is a keystone species in the North Atlantic that plays critical roles in nutrient cycling, water filtration, and habitat creation. Blue mussel populations have declined significantly throughout the North Atlantic due to various factors, including habitat loss, pollution, increasing water temperature, and parasites. One parasite is Proctoeces maculatus, a digenetic trematode, which uses M. edulis as an intermediate host. This parasite causes reduced growth, castration, and death in mussels. The range of P. maculatus has expanded northward from Cape Cod, MA to Maine which may be associated with rising temperatures in the Gulf of Maine. To evaluate the negative impacts of P. maculatus on mussels, we analyzed its infections in M. edulis throughout the Boston Harbor, MA. P. maculatus was present in every population and time point analyzed, with approximately 50% of mussels in the harbor infected. The parasite reduced gonadal development in infected mussels, which could lead to decreased fecundity. Severe P. maculatus infections induced a stress response, indicated by increased HSP70 expression. We developed a non-destructive hemolymph-based assay to determine if mussels are infected with P. maculatus, thus speeding up the evaluation process and eliminating the need to sacrifice individuals. With P. maculatus' continued expansion northward, more mussel populations will be under threat from this parasite.

2.
Environ Sci Technol ; 56(20): 14649-14659, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36201633

RESUMO

Resistance alleles within the voltage-gated sodium channel (vgsc) have been correlated with pyrethroid resistance in wild populations of the nontarget amphipod, Hyalella azteca from California (CA), U.S.A. In the present study, we expand upon the relationship between land use and the evolution of pesticide resistance in H. azteca to develop a quantitative methodology to target and screen novel populations for resistance allele genotypes in a previously uninvestigated region of the U.S. (New England: NE). By incorporating urban land development and toxicity-normalized agricultural pesticide use indices into our site selection, we successfully identified three amino acid substitutions associated with pyrethroid resistance. One of the resistance mutations has been described in H. azteca from CA (L925I). We present the remaining two (vgsc I936F and I936V) as novel pyrethroid-resistance alleles in H. azteca based on previous work in insects and elevated cyfluthrin resistance in one NE population. Our results suggest that urban pesticide use is a strong driver in the evolution of resistance alleles in H. azteca. Furthermore, our method for resistance allele screening provides an applied framework for detecting ecosystem impairment on a nationwide scale that can be incorporated into ecological risk assessment decisions.


Assuntos
Anfípodes , Inseticidas , Praguicidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Poluentes Químicos da Água , Agricultura , Anfípodes/genética , Animais , Ecossistema , Inseticidas/análise , Poluentes Químicos da Água/análise
3.
Ecotoxicology ; 30(3): 514-523, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33624205

RESUMO

Wild-type Hyalella azteca are highly sensitive to pyrethroid insecticides and typically do not survive exposure; however, pyrethroid bioaccumulation by insecticide-resistant H. azteca is an important potential risk factor for the transfer of pyrethroids to higher trophic species in aquatic systems. In the current study, four populations of pyrethroid-resistant H. azteca with corresponding sediment samples were sampled throughout the year, and nine-current use pyrethroids (tefluthrin, fenpropathrin, bifenthrin, cyhalothrin, permethrin, cyfluthrin, cypermethrin, esfenvalerate and deltamethrin) were measured. Bifenthrin was detected in every pyrethroid-resistant H. azteca tissue sample, up to 813 ng/g lipid, while cyhalothrin and permethrin were detected in fewer (18 and 28%, respectively) samples. Concurrent sampling of the sediment showed total pyrethroid concentrations exceeding toxic unit thresholds for non-resistant H. azteca survival, and confirmed the ubiquitous presence of bifenthrin at each site and sampling event. Bifenthrin concentrations in H. azteca tended to be higher in samples collected in winter months, and seasonal factors, such as temperature and rainfall, may have contributed to the noted differences in bioaccumulation. Finally, the bifenthrin and permethrin biota-sediment accumulation factors (BSAF) for pyrethroid-resistant H. azteca were similar to the BSAF values for less sensitive invertebrates, and therefore the development of resistance may enable an additional pathway for trophic transfer of pyrethroids in species that would otherwise be too sensitive to survive the exposure.


Assuntos
Anfípodes , Inseticidas , Piretrinas , Poluentes Químicos da Água , Animais , Bioacumulação , Resistência a Inseticidas , Inseticidas/análise , Inseticidas/toxicidade , Piretrinas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Environ Sci Technol ; 52(16): 9419-9430, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29953215

RESUMO

Transcriptomics, high-throughput assays, and adverse outcome pathways (AOP) are promising approaches applied to toxicity monitoring in the 21st century, but development of these methods is challenging for nonmodel organisms and emerging contaminants. For example, Endocrine Disrupting Compounds (EDCs) may cause reproductive impairments and feminization of male bivalves; however, the mechanism linked to this adverse outcome is unknown. To develop mechanism-based biomarkers that may be linked through an AOP, we exposed Mytilus edulis to 17-alpha-ethinylestradiol (5 and 50 ng/L) and 4-nonylphenol (1 and 100 µg/L) for 32 and 39 days. When mussels were exposed to these EDCs, we found elevated female specific transcripts and significant female-skewed sex ratios using a RT-qPCR assay. We performed gene expression analysis on digestive gland tissue using an M. edulis microarray and through network and targeted analyses identified the nongenomic estrogen signaling pathway and steroidogenesis pathway as the likely mechanisms of action for a putative AOP. We also identified several homologues to genes within the vertebrate steroidogenesis pathway including the cholesterol side chain cleavage complex. From this AOP, we designed the Coastal Biosensor for Endocrine Disruption (C-BED) assay which was confirmed in the laboratory and tested in the field.


Assuntos
Disruptores Endócrinos , Mytilus edulis , Mytilus , Poluentes Químicos da Água , Animais , Biomarcadores , Sistema Endócrino , Feminino , Masculino , Transcriptoma
5.
Environ Sci Technol ; 52(2): 859-867, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29240994

RESUMO

Traditional Toxicity Identification Evaluations (TIE) are applied to identify causal agents in complex environmental samples showing toxicity and rely upon physical or chemical manipulation of samples. However, mutations conferring toxicant resistance provide the opportunity for a novel biologically based TIE. Populations within the Hyalella azteca complex from pesticide-affected waterways were 2 and 3 orders of magnitude more resistant to the pyrethroid cyfluthrin and the organophosphate chlorpyrifos, respectively, than laboratory-cultured H. azteca widely used for toxicity testing. Three resistant populations, as well as laboratory-cultured, nonresistant H. azteca, were exposed to urban and agricultural runoff. Every sample causing death or paralysis in the nonresistant individuals had no effect on pyrethroid-resistant individuals, providing strong evidence that a pyrethroid was the responsible toxicant. The lack of toxicity to chlorpyrifos-sensitive, but pyrethroid-resistant, individuals suggested chlorpyrifos was not a likely toxicant, a hypothesis supported by chemical analysis. Since these mutations that confer resistance to pesticides are highly specific, toxicity to wild-type, but not resistant animals, provides powerful evidence of causality. It may be possible to identify strains resistant to even a wider variety of toxicants, further extending the potential use of this biologically based TIE technique beyond the pyrethroid and organophosphate-resistant strains currently available.


Assuntos
Anfípodes , Inseticidas , Praguicidas , Piretrinas , Poluentes Químicos da Água , Animais , Mutação
6.
Environ Sci Technol ; 52(10): 6009-6022, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29634279

RESUMO

Hyalella azteca is a cryptic species complex of epibenthic amphipods of interest to ecotoxicology and evolutionary biology. It is the primary crustacean used in North America for sediment toxicity testing and an emerging model for molecular ecotoxicology. To provide molecular resources for sediment quality assessments and evolutionary studies, we sequenced, assembled, and annotated the genome of the H. azteca U.S. Lab Strain. The genome quality and completeness is comparable with other ecotoxicological model species. Through targeted investigation and use of gene expression data sets of H. azteca exposed to pesticides, metals, and other emerging contaminants, we annotated and characterized the major gene families involved in sequestration, detoxification, oxidative stress, and toxicant response. Our results revealed gene loss related to light sensing, but a large expansion in chemoreceptors, likely underlying sensory shifts necessary in their low light habitats. Gene family expansions were also noted for cytochrome P450 genes, cuticle proteins, ion transporters, and include recent gene duplications in the metal sequestration protein, metallothionein. Mapping of differentially expressed transcripts to the genome significantly increased the ability to functionally annotate toxicant responsive genes. The H. azteca genome will greatly facilitate development of genomic tools for environmental assessments and promote an understanding of how evolution shapes toxicological pathways with implications for environmental and human health.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Ecotoxicologia , Sedimentos Geológicos , América do Norte , Testes de Toxicidade
7.
Proc Natl Acad Sci U S A ; 110(41): 16532-7, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24065824

RESUMO

Use of pesticides can have substantial nonlethal impacts on nontarget species, including driving evolutionary change, often with unknown consequences for species, ecosystems, and society. Hyalella azteca, a species complex of North American freshwater amphipods, is widely used for toxicity testing of water and sediment and has frequently shown toxicity due to pyrethroid pesticides. We demonstrate that 10 populations, 3 from laboratory cultures and 7 from California water bodies, differed by at least 550-fold in sensitivity to pyrethroids. The populations sorted into four phylogenetic groups consistent with species-level divergence. By sequencing the primary pyrethroid target site, the voltage-gated sodium channel, we show that point mutations and their spread in natural populations were responsible for differences in pyrethroid sensitivity. At least one population had both mutant and WT alleles, suggesting ongoing evolution of resistance. Although nonresistant H. azteca were susceptible to the typical neurotoxic effects of pyrethroids, gene expression analysis suggests the mode of action in resistant H. azteca was not neurotoxicity but was oxidative stress sustained only at considerably higher pyrethroid concentrations. The finding that a nontarget aquatic species has acquired resistance to pesticides used only on terrestrial pests is troubling evidence of the impact of chronic pesticide transport from land-based applications into aquatic systems. Our findings have far-reaching implications for continued uncritical use of H. azteca as a principal species for monitoring and environmental policy decisions.


Assuntos
Anfípodes/genética , Monitoramento Ambiental/métodos , Variação Genética , Resistência a Inseticidas/genética , Piretrinas/toxicidade , Canais de Sódio Disparados por Voltagem/genética , Poluentes Químicos da Água/toxicidade , Animais , Sequência de Bases , California , Perfilação da Expressão Gênica , Genética Populacional , Funções Verossimilhança , Análise em Microsséries , Modelos Genéticos , Dados de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
8.
Environ Sci Technol ; 47(16): 9453-60, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23889737

RESUMO

Nanoparticles (NPs) are expected to make their way into the aquatic environment where sedimentation of particles will likely occur, putting benthic organisms at particular risk. Therefore, organisms such as Hyalella azteca, an epibenthic crustacean which forages at the sediment surface, is likely to have a high potential exposure. Here we show that zinc oxide (ZnO) NPs are more toxic to H. azteca compared with the corresponding metal ion, Zn(2+). Dissolution of ZnO NPs contributes about 50% of the Zn measured in the ZnO NP suspensions, and cannot account for the toxicity of these particles to H. azteca. However, gene expression analysis is unable to distinguish between the ZnO NP exposures and zinc sulfate (ZnSO4) exposures at equitoxic concentrations. These results lead us to hypothesize that ZnO NPs provide an enhanced exposure route for Zn(2+) uptake into H. azteca, and possibly other sediment dwelling organisms. Our study supports the prediction that sediment dwelling organisms are highly susceptible to the effects of ZnO NPs and should be considered in the risk assessment of these nanomaterials.


Assuntos
Anfípodes/efeitos dos fármacos , Nanopartículas/toxicidade , Óxido de Zinco/toxicidade , Anfípodes/metabolismo , Animais , Perfilação da Expressão Gênica , Medição de Risco , Testes de Toxicidade Aguda , Sulfato de Zinco/toxicidade
9.
Environ Pollut ; 322: 121165, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36720337

RESUMO

Hyalella azteca are epibenthic amphipods that have developed resistance to pyrethroid and organophosphate insecticides due to single amino acid substitutions in the voltage-gated sodium channel and the acetylcholinesterase-1 gene, respectively. Aquatic systems are often contaminated with several different types of insecticides, therefore there is a possibility that H. azteca have also developed resistance to other classes of insecticides. The aims of the current study were to verify that pyrethroid- and organophosphate-resistant H. azteca have retained their resistance after being cultured in the absence of selective pressure for 5 years (Escondido Creek population) and 9 years (Mosher Slough population), to determine if these populations have cross-resistance to carbaryl (carbamate) and 4,4'-dichlorodiphenyltrichloroethane (DDT; organochlorine), and determine whether previous field exposure to fipronil (phenylpyrazole) and imidacloprid (neonicotinoid) caused resistance in cultured pyrethroid- and organophosphate-resistant H. azteca populations. Escondido Creek and Mosher Slough H. azteca populations both maintained high tolerances for bifenthrin due to L925I and I936F amino acid substitutions. Resistance was also found for chlorpyrifos in the Escondido Creek and Mosher Slough populations with lower genotype frequencies of the G119S substitution, indicating that additional factors may be responsible for organophosphate resistance in this study. Mosher Slough H. azteca were moderately resistant to DDT, and Escondido Creek and Mosher Slough H. azteca were moderately resistant to carbaryl, suggesting cross-resistance. No differences were observed in acute toxicity values across the three populations of H. azteca for fipronil and imidacloprid, and this is possibly due to the lack of exposure to toxic concentrations of these insecticides in the field and lack of similar modes of action to pyrethroids and organophosphates. Resistance is known to be associated with fitness costs that can place insecticide-resistant populations at risk for decline through decreased survival and reduced fecundity.


Assuntos
Anfípodes , Clorpirifos , Inseticidas , Piretrinas , Animais , Inseticidas/análise , Resistência a Inseticidas/genética , Carbaril , DDT , Acetilcolinesterase , Piretrinas/toxicidade , Clorpirifos/toxicidade
10.
Environ Sci Technol ; 46(11): 6288-96, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22545559

RESUMO

Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxicology has presented new avenues to develop exposure biomarkers and investigate the mode of toxicity of novel chemicals. In the present study we used a 15k oligonucleotide microarray for Daphnia magna, a freshwater crustacean and common indicator species for toxicity, to differentiate between particle specific and ionic silver toxicity and to develop exposure biomarkers for citrate-coated and PVP-coated AgNPs. Gene expression profiles revealed that AgNO(3) and AgNPs have distinct expression profiles suggesting different modes of toxicity. Major biological processes disrupted by the AgNPs include protein metabolism and signal transduction. In contrast, AgNO(3) caused a downregulation of developmental processes, particularly in sensory development. Metal responsive and DNA damage repair genes were induced by the PVP AgNPs, but not the other treatments. In addition, two specific biomarkers were developed for the environmental detection of PVP AgNPs; although further verification under different environmental conditions is needed.


Assuntos
Daphnia/efeitos dos fármacos , Daphnia/genética , Exposição Ambiental/análise , Nanopartículas Metálicas/toxicidade , Nitrato de Prata/toxicidade , Prata/toxicidade , Toxicogenética , Animais , Biomarcadores/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Íons , Reprodutibilidade dos Testes , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Testes de Toxicidade Aguda
11.
Mar Pollut Bull ; 184: 114173, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36191473

RESUMO

Coastal harbor areas are subjected to a myriad of contamination sources with largely unknown effects. Such complex chemical mixtures are difficult to monitor but transcriptomics is a promising approach for such biomonitoring. The present study was designed to verify the use of the Coastal Biosensor for Endocrine Disruption (C-BED) assay, previously developed to detect emerging contaminants and their effects on Mytilus edulis, on another mussel species, Mytilus galloprovincialis. Mussels were caged on St-Florent harbor (contaminated) and on Revellata Bay (reference) for three months. A classical multibiomarkers approach was coupled to the C-BED assay. The results of both approaches were analysed using the Integrated Biomarkers Responses (IBR) and compared to each other. Both approaches demonstrated a higher contamination and probable endocrine disruption of mussels in St-Florent, compared to the reference station. These results confirm that the C-BED assay provides an innovative method to expand our ability to detect emerging contaminants.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Transcriptoma , Biomarcadores
12.
Artigo em Inglês | MEDLINE | ID: mdl-34952324

RESUMO

Mollusks, especially bivalves, exhibit a great diversity of sex determining mechanisms, including both genetic and environmental sex determination. Some bivalve species can be gonochoristic (separate sexes), while others are hermaphroditic (sequential or simultaneous). Several models have been proposed for specific bivalve species, utilizing information gained from gene expression data, as well as limited RAD-seq data (e.g., from Crassostrea gigas). However, these mechanisms are not as well studied as those in model organisms (e.g., Mus musculus, Drosophila melanogaster, Caenorhabditis elegans) and many genes involved in sex differentiation are not well characterized. We used phylotranscriptomics to better understand which possible sex differentiating genes are in bivalves and how these genes relate to similar genes in diverse phyla. We collected RNAseq data from eight phylogenetically diverse bivalve species: Argopecten irradians, Ensis directus, Geukensia demissa, Macoma tenta, Mercenaria mercenaria, Mya arenaria, Mytilus edulis, and Solemya velum. Using these data, we assembled representative transcriptomes for each species. We then searched for candidate sex differentiating genes using BLAST and confirmed the identity of nine genes using phylogenetics analyses from nine phyla. To increase the confidence of identification, we included ten bivalve genomes in our analyses. From the analysis of doublesex and mab-3 related transcription factor (DMRT) genes, we confirmed the identify of a Mollusk-specific sex determining DMRT gene: DMRT1L. Based on gene expression data from M. edulis and previous research, DMRT1L and FoxL2 are key genes for male and female development, respectively.


Assuntos
Crassostrea , Pectinidae , Animais , Crassostrea/genética , Drosophila melanogaster , Feminino , Masculino , Camundongos , Pectinidae/genética , Filogenia , Diferenciação Sexual/genética
13.
Chemosphere ; 299: 134393, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35337826

RESUMO

Recent studies demonstrated pyrethroid resistance associated with voltage-gated sodium channel mutations in populations of the epibenthic amphipod, Hyalella azteca. Resistant populations were able to tolerate and bioconcentrate pyrethroids at concentrations significantly higher than toxic levels for non-resistant populations. In conjunction with elevated bioconcentration potential, environmental alteration particularly as a result of global climate change is anticipated to significantly alter abiotic parameters including temperature and salinity. These changes are expected to influence uptake and biotransformation of contaminants. Thus, the aims of the current study were a) to examine the bioconcentration potential of permethrin in two pyrethroid-resistant clades of H. azteca and b) assess the influence of temperature and salinity changes on toxicokinetic parameters. Two pyrethroid-resistant clades of H. azteca were exposed to 14C-permethrin at three salinities (0.2, 1.0 and 6.0 practical salinity units (PSU)) and temperatures (18, 23 and 28 °C). Tests were conducted for up to 36 h and uptake, elimination and biotransformation rates were calculated. Both populations demonstrated bioconcentration factors (BCFs) between five and seven times greater than published data for non-resistant H. azteca, with significant differences between clades. Calculated BCF values were comparable to field populations of resistant H. azteca, emphasizing the potential for elevated pyrethroid bioconcentration in the natural environment and increased exposure for predators consuming pyrethroid-resistant aquatic invertebrates. Alterations to temperature and salinity had no statistically significant effect on uptake or parent compound half-life in either population, though biotransformation was elevated at higher temperatures in both populations. Salinity had a variable effect between the two populations, with lower BCF values at 1.0 PSU in clade D H. azteca and greater BCFs at 6.0 PSU in clade C H. azteca. This is the first study to demonstrate the potential for future climate scenarios to influence toxicokinetics in pyrethroid-resistant aquatic organisms.


Assuntos
Anfípodes , Inseticidas , Piretrinas , Poluentes Químicos da Água , Animais , Bioacumulação , Inseticidas/análise , Permetrina/metabolismo , Permetrina/toxicidade , Piretrinas/metabolismo , Salinidade , Temperatura , Toxicocinética , Poluentes Químicos da Água/análise
14.
Environ Sci Technol ; 45(8): 3710-7, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21417318

RESUMO

Omic technologies offer unprecedented opportunities to better understand mode(s)-of-toxicity and downstream secondary effects by providing a holistic view of the molecular changes underlying physiological disruption. Crustacean hemolymph represents a largely untapped biochemical resource for such toxicity studies. We sought to characterize changes in the hemolymph metabolome and whole-body transcriptome to reveal early processes leading to chronic toxicity in the indicator species, Daphnia magna, after 24-h sublethal cadmium exposure (18 µg/L, corresponding to 1/10 LC(50)). We first confirmed that metabolites can be detected and identified in small volumes (∼3-6 µL) of D. magna hemolymph using Fourier transform ion cyclotron resonance mass spectrometry and NMR spectroscopy. Subsequently, mass spectrometry based metabolomics of hemolymph identified disruption to two major classes of metabolites: amino acids and fatty acids. These findings were compared to differentially expressed genes identified by a D. magna 44k oligonucleotide microarray, which included decreased levels of digestive enzymes and increased expression of cuticle proteins and oxidative stress response genes. The combination of metabolic and transcriptional changes revealed through KEGG pathway analysis and gene ontology, respectively, enabled a more complete understanding of how cadmium disrupts nutrient uptake and metabolism, ultimately resulting in decreased energy reserves and chronic toxicity.


Assuntos
Cádmio/toxicidade , Daphnia/efeitos dos fármacos , Hemolinfa/metabolismo , Metaboloma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Daphnia/genética , Daphnia/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Metabolômica , Estresse Oxidativo
15.
Environ Sci Technol ; 45(2): 762-8, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21142172

RESUMO

Zinc oxide nanoparticles (ZnO NPs) are being rapidly developed for use in consumer products, wastewater treatment, and chemotherapy providing several possible routes for ZnO NP exposure to humans and aquatic organisms. Recent studies have shown that ZnO NPs undergo rapid dissolution to Zn(2+), but the relative contribution of Zn(2+) to ZnO NP bioavailability and toxicity is not clear. We show that a fraction of the ZnO NPs in suspension dissolves, and this fraction cannot account for the toxicity of the ZnO NP suspensions to Daphnia magna. Gene expression profiling of D. magna exposed to ZnO NPs or ZnSO(4) at sublethal concentrations revealed distinct modes of toxicity. There was also little overlap in gene expression between ZnO NPs and SiO(x) NPs, suggesting specificity for the ZnO NP expression profile. ZnO NPs effected expression of genes involved in cytoskeletal transport, cellular respiration, and reproduction. A specific pattern of differential expression of three biomarker genes including a multicystatin, ferritin, and C1q containing gene were confirmed for ZnO NP exposure and provide a suite of biomarkers for identifying environmental exposure to ZnO NPs and differentiating between NP and ionic exposure.


Assuntos
Daphnia/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade , Animais , Biomarcadores/metabolismo , Cátions/metabolismo , Cátions/toxicidade , Respiração Celular/efeitos dos fármacos , Daphnia/genética , Daphnia/metabolismo , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo , Óxido de Zinco/metabolismo
16.
Environ Pollut ; 284: 117158, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33895574

RESUMO

Chronic exposure to pyrethroid insecticides can result in strong selective pressures on non-target species in aquatic systems and drive the evolution of resistance and population-level changes. Characterizing the underlying mechanisms of resistance is essential to better understanding the potential consequences of contaminant-driven microevolution. The current study found that multiple mechanisms enhance the overall tolerance of Hyalella azteca to the pyrethroid permethrin. In H. azteca containing mutations in the voltage-gated sodium channel (VGSC), both adaptation and acclimation played a role in mitigating the adverse effects of pyrethroid exposures. Pyrethroid resistance is primarily attributed to the heritable mutation at a single locus of the VGSC, resulting in reduced target-site sensitivity. However, additional pyrethroid tolerance was conferred through enhanced enzyme-mediated detoxification. Cytochrome P450 monooxygenases (CYP450) and general esterases (GE) significantly contributed to the detoxification of permethrin in H. azteca. Over time, VGSC mutated H. azteca retained most of their pyrethroid resistance, though there was some increased sensitivity from parent to offspring when reared in the absence of pyrethroid exposure. Permethrin median lethal concentrations (LC50s) declined from 1809 ng/L in parent (P0) individuals to 1123 ng/L in the first filial (F1) generation, and this reduction in tolerance was likely related to alterations in acclimation mechanisms, rather than changes to target-site sensitivity. Enzyme bioassays indicated decreased CYP450 and GE activity from P0 to F1, whereas the VGSC mutation was retained. The permethrin LC50s in resistant H. azteca were still two orders-of-magnitude higher than non-resistant populations indicating that the largest proportion of resistance was maintained through the inherited VGSC mutation. Thus, the noted variation in tolerance in H. azteca is likely associated with inducible traits controlling enzyme pathways. A better understanding of the mechanistic and genomic basis of acclimation is necessary to more accurately predict the ecological and evolutionary consequences of contaminant-driven change in H. azteca.


Assuntos
Anfípodes , Inseticidas , Piretrinas , Poluentes Químicos da Água , Anfípodes/genética , Animais , Resistência a Inseticidas/genética , Inseticidas/análise , Inseticidas/toxicidade , Permetrina/toxicidade , Piretrinas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
Sci Total Environ ; 753: 141945, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32911165

RESUMO

Global climate change continues to cause alterations in environmental conditions which can be detrimental to aquatic ecosystem health. The development of pesticide resistance in organisms such as Hyalella azteca can lead to increased susceptibility to environmental change. This research provides a robust assessment of the effects of alterations in salinity on the fitness of H. azteca. Full-life cycle bioassays were conducted with non-resistant and pyrethroid-resistant H. azteca cultured under two salinity conditions representing a rise from freshwater control (0.2 psu) to increased salinity due to salt-water intrusion, reduced snowpack and evaporative enrichment (6.0 psu). Additionally, the upper thermal tolerance was defined for each population at each salinity. Pyrethroid-resistant H. azteca exhibited reduced thermal tolerance; however, they produced more offspring per female than non-resistant animals. Compared to the low salinity water, both non-resistant and pyrethroid-resistant H. azteca produced more offspring, grew larger (based on dry mass), and produced larger offspring in elevated salinity, although pyrethroid-resistant animals had lower survival and lipid levels. This study provides fundamental information about the fitness potential of H. azteca in a changing climate, suggesting advantages for non-resistant animals under future climate scenarios. In addition, this research further supports the need to consider the effects of global climate change when conducting risk assessment of contaminants of concern, as well as the contribution of contaminants when investigating climate change impacts on populations, as exposure may contribute to niche contraction.


Assuntos
Anfípodes , Inseticidas , Poluentes Químicos da Água , Animais , Mudança Climática , Ecossistema , Feminino , Inseticidas/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
18.
Environ Pollut ; 291: 118217, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34583267

RESUMO

Chlorpyrifos, an organophosphate (OP) insecticide, is prevalent in aquatic systems globally and is often implicated in aquatic toxicity during storm events. Chlorpyrifos induces toxicity by inhibition of acetylcholinesterase (AChE) activity, which has been related to alterations to fish swimming performance. Resistance to organophosphate insecticides, including chlorpyrifos, is prevalent in populations of the epibenthic amphipod Hyalella azteca in areas with known OP exposure. Previous studies have demonstrated an elevated bioaccumulation potential of insecticide-resistant prey items, however the potential for trophic transfer of chlorpyrifos from OP-resistant prey items and associated neurotoxic effects in fish predators has not been studied. Consequently, the present study aimed to determine the potential for trophic transfer of chlorpyrifos from OP-resistant H. azteca to a known predator, the inland silverside, Menidia beryllina at two temperatures (18 and 23 °C) to simulate temperature changes associated with global climate change (GCC). Fish were fed either 14C-chlorpyrifos-dosed H. azteca or control animals for 7 d, after which total bioaccumulation, percent parent chlorpyrifos, brain AChE activity and swimming performance (ramp-Ucrit) were determined. Fish fed chlorpyrifos-dosed H. azteca bioaccumulated chlorpyrifos ranging from 29.9 to 1250 ng/g lipid, demonstrating the potential for trophic transfer. Lower bioaccumulation and greater biotransformation were observed in M. beryllina at 23 °C as compared to 18 °C, though this was not statistically significant. A significant 36.5% reduction in brain AChE activity was observed in fish fed chlorpyrifos-dosed H. azteca at 23 °C only, which may be attributed to increased biotransformation of parent chlorpyrifos to more potent AChE-inhibiting metabolites. Dietary chlorpyrifos exposure had no significant effect on swimming performance in M. beryllina, though ramp-Ucrit was significantly increased by 25% at 23 as compared to 18 °C. These findings confirm the potential for trophic transfer of chlorpyrifos from OP-resistant prey to fish predators and the potential for elevated temperatures to exacerbate the neurotoxic effects of chlorpyrifos.


Assuntos
Anfípodes , Clorpirifos , Inseticidas , Poluentes Químicos da Água , Acetilcolinesterase , Animais , Clorpirifos/toxicidade , Inseticidas/análise , Natação , Temperatura , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
Environ Pollut ; 289: 117900, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391048

RESUMO

Given extensive use of pesticides in agriculture, there is concern for unintended consequences to non-target species. The non-target freshwater amphipod, Hyalella azteca has been found to show resistance to the organophosphate (OP) pesticide, chlorpyrifos, resulting from an amino acid substitution in acetylcholinesterase (AChE), suggesting a selective pressure of unintended pesticide exposure. Since resistant organisms can survive in contaminated habitats, there is potential for them to accumulate higher concentrations of insecticides, increasing the risk for trophic transfer. In the present study, we estimated the uptake and elimination of chlorpyrifos in non-resistant US Lab, and resistant Ulatis Creek (ULC Resistant), H. azteca populations by conducting 24-h uptake and 48-h elimination toxicokinetic experiments with 14C-chlorpyrifos. Our results indicated that non-resistant H. azteca had a larger uptake clearance coefficient (1467 mL g-1 h-1) than resistant animals (557 mL g-1 h-1). The half-life derived from the toxicokinetic models also estimated that steady state conditions were reached at 13.5 and 32.5 h for US Lab and ULC, respectively. Bioaccumulation was compared between non-resistant and resistant H. azteca by exposing animals to six different environmentally relevant concentrations for 28 h. Detection of chlorpyrifos in animal tissues indicated that resistant animals exposed to high concentrations of chlorpyrifos were capable of accumulating the insecticide up to 10-fold higher compared to non-resistant animals. Metabolite analysis from the 28-h concentration experiments showed that between 20 and 50 % parent compound was detected in H. azteca. These results imply that bioaccumulation potential can be more significant in chlorpyrifos resistant H. azteca and may be an essential factor in assessing the full impacts of toxicants on critical food webs, especially in the face of increasing pesticide and chemical runoff.


Assuntos
Anfípodes , Clorpirifos , Inseticidas , Poluentes Químicos da Água , Acetilcolinesterase/metabolismo , Anfípodes/metabolismo , Animais , Bioacumulação , Clorpirifos/toxicidade , Inseticidas/análise , Inseticidas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
20.
Aquat Toxicol ; 220: 105397, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31954981

RESUMO

Within monitoring frameworks, biomarkers provide several benefits because they serve as intermediates between pollutant exposure and effects, and integrate the responses of contaminants that operate through the same mechanism of action. This study was designed to verify the use of transcriptomic biomarkers developed in our prior work (i.e., Coastal Biosensor of Endocrine Disruption; C-BED assay) on Mytilus edulis and identify additional biomarkers for legacy pollutants. M. edulis were collected from a reference site in Pemaquid, ME, USA and deployed by the Massachusetts Water Resources Authority (MWRA) at locations in and outside Boston Harbor, MA, USA: including (1) Boston Inner Harbor (IH), (2) the current outfall (OS), (3) 1 km away from the current outfall (LNB), and (4) Deer Island (DI), the site where untreated wastewater was formerly discharged into the bay. Differential gene expression was quantified with a high density microarray. Seven genes significantly correlated with whole tissue concentration of PAHs, and six genes significantly correlated with whole body concentrations of PCBs, two groups of legacy contaminants that were elevated at stations IH, OS, and DI. Enrichment analysis indicated that IH mussels had the highest induction of stress response genes, which correlated with the higher levels of contaminants measured at this site. Based on the C-BED assay gene analysis, stations IH and OS exhibited signs of endocrine disruption, which were further confirmed by incorporating the results for the C-BED assay within the Integrated Biomarker Response (IBR) approach. This study successfully demonstrated the potential use of transcriptomic biomarkers within a monitoring program to identify the presence and organismal responses to endocrine disrupting and legacy contaminant classes.


Assuntos
Disruptores Endócrinos/toxicidade , Biomarcadores Ambientais/genética , Monitoramento Ambiental/métodos , Mytilus edulis/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Disruptores Endócrinos/análise , Mytilus edulis/genética , New England , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Água do Mar/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA