Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Nat Immunol ; 18(10): 1150-1159, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28805811

RESUMO

Caveolin-1 (Cav1) regulates the nanoscale organization and compartmentalization of the plasma membrane. Here we found that Cav1 controlled the distribution of nanoclusters of isotype-specific B cell antigen receptors (BCRs) on the surface of B cells. In mature B cells stimulated with antigen, the immunoglobulin M BCR (IgM-BCR) gained access to lipid domains enriched for GM1 glycolipids, by a process that was dependent on the phosphorylation of Cav1 by the Src family of kinases. Antigen-induced reorganization of nanoclusters of IgM-BCRs and IgD-BCRs regulated BCR signaling in vivo. In immature Cav1-deficient B cells, altered nanoscale organization of IgM-BCRs resulted in a failure of receptor editing and a skewed repertoire of B cells expressing immunoglobulin-µ heavy chains with hallmarks of poly- and auto-reactivity, which ultimately led to autoimmunity in mice. Thus, Cav1 emerges as a cell-intrinsic regulator that prevents B cell-induced autoimmunity by means of its role in plasma-membrane organization.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Caveolina 1/metabolismo , Tolerância Imunológica , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Autoimunidade/genética , Autoimunidade/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Caveolina 1/genética , Expressão Gênica , Tolerância Imunológica/genética , Imunoglobulina D/imunologia , Imunoglobulina D/metabolismo , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fosforilação , Ligação Proteica , Receptores de Antígenos de Linfócitos B/genética
2.
Cell ; 146(1): 148-63, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21729786

RESUMO

Mechanotransduction is a key determinant of tissue homeostasis and tumor progression. It is driven by intercellular adhesions, cell contractility, and forces generated within the microenvironment and is dependent on extracellular matrix composition, organization, and compliance. We show that caveolin-1 (Cav1) favors cell elongation in three-dimensional cultures and promotes Rho- and force-dependent contraction, matrix alignment, and microenvironment stiffening through regulation of p190RhoGAP. In turn, microenvironment remodeling by Cav1 fibroblasts forces cell elongation. Cav1-deficient mice have disorganized stromal tissue architecture. Stroma associated with human carcinomas and melanoma metastases is enriched in Cav1-expressing carcinoma-associated fibroblasts (CAFs). Cav1 expression in breast CAFs correlates with low survival, and Cav1 depletion in CAFs decreases CAF contractility. Consistently, fibroblast expression of Cav1, through p190RhoGAP regulation, favors directional migration and invasiveness of carcinoma cells in vitro. In vivo, stromal Cav1 remodels peri- and intratumoral microenvironments to facilitate tumor invasion, correlating with increased metastatic potency. Thus, Cav1 modulates tissue responses through force-dependent architectural regulation of the microenvironment.


Assuntos
Caveolina 1/metabolismo , Metástase Neoplásica/patologia , Neoplasias/patologia , Animais , Movimento Celular , Fibroblastos/patologia , Humanos , Melanoma/patologia , Camundongos , Camundongos Knockout
3.
Nat Rev Mol Cell Biol ; 14(2): 98-112, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23340574

RESUMO

Caveolae are submicroscopic, plasma membrane pits that are abundant in many mammalian cell types. The past few years have seen a quantum leap in our understanding of the formation, dynamics and functions of these enigmatic structures. Caveolae have now emerged as vital plasma membrane sensors that can respond to plasma membrane stresses and remodel the extracellular environment. Caveolae at the plasma membrane can be removed by endocytosis to regulate their surface density or can be disassembled and their structural components degraded. Coat proteins, called cavins, work together with caveolins to regulate the formation of caveolae but also have the potential to dynamically transmit signals that originate in caveolae to various cellular destinations. The importance of caveolae as protective elements in the plasma membrane, and as membrane organizers and sensors, is highlighted by links between caveolae dysfunction and human diseases, including muscular dystrophies and cancer.


Assuntos
Cavéolas/fisiologia , Membrana Celular/química , Membrana Celular/metabolismo , Animais , Cavéolas/química , Cavéolas/metabolismo , Caveolinas/química , Caveolinas/genética , Caveolinas/metabolismo , Caveolinas/fisiologia , Citoproteção/genética , Citoproteção/fisiologia , Endocitose/genética , Endocitose/fisiologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Modelos Biológicos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
4.
Traffic ; 21(1): 181-185, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31448516

RESUMO

Caveolae are an abundant, but enigmatic, plasma membrane feature of vertebrate cells. In this brief commentary, the authors attempt to answer some key questions related to the formation and function of caveolae based on round-table discussions at the first EMBO Workshop on Caveolae held in France in May 2019.


Assuntos
Cavéolas , Caveolinas , Animais , Membrana Celular
5.
J Cell Sci ; 130(2): 490-501, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27909248

RESUMO

Proper endosomal trafficking of ligand-activated G-protein-coupled receptors (GPCRs) is essential to spatiotemporally tune their physiological responses. For the monocyte chemoattractant receptor 2 (CCR2B; one of two isoforms encoded by CCR2), endocytic recycling is important to sustain monocyte migration, whereas filamin A (FLNa) is essential for CCL2-induced monocyte migration. Here, we analyze the role of FLNa in the trafficking of CCR2B along the endocytic pathway. In FLNa-knockdown cells, activated CCR2B accumulated in enlarged EEA-1-positive endosomes, which exhibited slow movement and fast fluorescence recovery, suggesting an imbalance between receptor entry and exit rates. Utilizing super-resolution microscopy, we observed that FLNa-GFP, CCR2B and ß2-adrenergic receptor (ß2AR) were present in actin-enriched endosomal microdomains. Depletion of FLNa decreased CCR2B association with these microdomains and concomitantly delayed CCR2B endosomal traffic, without apparently affecting the number of microdomains. Interestingly, CCR2B and ß2AR signaling induced phosphorylation of FLNa at residue S2152, and this phosphorylation event was contributes to sustain receptor recycling. Thus, our data strongly suggest that CCR2B and ß2AR signals to FLNa to stimulate its endocytosis and recycling to the plasma membrane.


Assuntos
Endocitose , Filaminas/metabolismo , Receptores CCR2/metabolismo , Actinas/metabolismo , Endossomos/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Microdomínios da Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Fosforilação , Fosfosserina/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais
6.
PLoS Comput Biol ; 14(11): e1006238, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500821

RESUMO

Toxicity is an important factor in failed drug development, and its efficient identification and prediction is a major challenge in drug discovery. We have explored the potential of microscopy images of fluorescently labeled nuclei for the prediction of toxicity based on nucleus pattern recognition. Deep learning algorithms obtain abstract representations of images through an automated process, allowing them to efficiently classify complex patterns, and have become the state-of-the art in machine learning for computer vision. Here, deep convolutional neural networks (CNN) were trained to predict toxicity from images of DAPI-stained cells pre-treated with a set of drugs with differing toxicity mechanisms. Different cropping strategies were used for training CNN models, the nuclei-cropping-based Tox_CNN model outperformed other models classifying cells according to health status. Tox_CNN allowed automated extraction of feature maps that clustered compounds according to mechanism of action. Moreover, fully automated region-based CNNs (RCNN) were implemented to detect and classify nuclei, providing per-cell toxicity prediction from raw screening images. We validated both Tox_(R)CNN models for detection of pre-lethal toxicity from nuclei images, which proved to be more sensitive and have broader specificity than established toxicity readouts. These models predicted toxicity of drugs with mechanisms of action other than those they had been trained for and were successfully transferred to other cell assays. The Tox_(R)CNN models thus provide robust, sensitive, and cost-effective tools for in vitro screening of drug-induced toxicity. These models can be adopted for compound prioritization in drug screening campaigns, and could thereby increase the efficiency of drug discovery.


Assuntos
Núcleo Celular/efeitos dos fármacos , Aprendizado Profundo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Algoritmos , Automação , Corantes Fluorescentes/química , Interpretação de Imagem Assistida por Computador/métodos , Indóis/química , Redes Neurais de Computação
7.
Hum Mol Genet ; 25(7): 1318-27, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26908609

RESUMO

Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver.


Assuntos
Modelos Animais de Doenças , Jejum/metabolismo , Glucose/metabolismo , Hidroximetilbilano Sintase/genética , Fígado/metabolismo , Porfiria Aguda Intermitente/metabolismo , Animais , Córtex Cerebral/metabolismo , Jejum/sangue , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Glucagon/sangue , Homeostase , Insulina/sangue , Masculino , Camundongos , Camundongos Knockout , Porfiria Aguda Intermitente/sangue , Porfiria Aguda Intermitente/terapia
8.
J Cell Sci ; 129(8): 1734-49, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26940916

RESUMO

Rab8 is a small Ras-related GTPase that regulates polarized membrane transport to the plasma membrane. Here, we developed a high-content analysis (HCA) tool to dissect Rab8-mediated actin and focal adhesion reorganization that revealed that Rab8 activation significantly induced Rac1 and Tiam1 to mediate cortical actin polymerization and RhoA-dependent stress fibre disassembly. Rab8 activation increased Rac1 activity, whereas its depletion activated RhoA, which led to reorganization of the actin cytoskeleton. Rab8 was also associated with focal adhesions, promoting their disassembly in a microtubule-dependent manner. This Rab8 effect involved calpain, MT1-MMP (also known as MMP14) and Rho GTPases. Moreover, we demonstrate the role of Rab8 in the cell migration process. Indeed, Rab8 is required for EGF-induced cell polarization and chemotaxis, as well as for the directional persistency of intrinsic cell motility. These data reveal that Rab8 drives cell motility by mechanisms both dependent and independent of Rho GTPases, thereby regulating the establishment of cell polarity, turnover of focal adhesions and actin cytoskeleton rearrangements, thus determining the directionality of cell migration.


Assuntos
Calpaína/metabolismo , Adesões Focais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Movimento Celular , Polaridade Celular , Células HeLa , Humanos , RNA Interferente Pequeno/genética , Fibras de Estresse/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteínas rab de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
9.
J Cell Sci ; 128(15): 2747-58, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26159735

RESUMO

An essential property of the plasma membrane of mammalian cells is its plasticity, which is required for sensing and transmitting of signals, and for accommodating the tensional changes imposed by its environment or its own biomechanics. Caveolae are unique invaginated membrane nanodomains that play a major role in organizing signaling, lipid homeostasis and adaptation to membrane tension. Caveolae are frequently associated with stress fibers, a major regulator of membrane tension and cell shape. In this Commentary, we discuss recent studies that have provided new insights into the function of caveolae and have shown that trafficking and organization of caveolae are tightly regulated by stress-fiber regulators, providing a functional link between caveolae and stress fibers. Furthermore, the tension in the plasma membrane determines the curvature of caveolae because they flatten at high tension and invaginate at low tension, thus providing a tension-buffering system. Caveolae also regulate multiple cellular pathways, including RhoA-driven actomyosin contractility and other mechanosensitive pathways, suggesting that caveolae could couple mechanotransduction pathways to actin-controlled changes in tension through their association with stress fibers. Therefore, we argue here that the association of caveolae with stress fibers could provide an important strategy for cells to deal with mechanical stress.


Assuntos
Fenômenos Biomecânicos/fisiologia , Cavéolas/metabolismo , Mecanotransdução Celular/fisiologia , Fibras de Estresse/metabolismo , Estresse Mecânico , Actomiosina/metabolismo , Animais , Membrana Celular/fisiologia , Humanos , Estrutura Terciária de Proteína , Transporte Proteico , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo
10.
Int J Mol Sci ; 18(4)2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28333097

RESUMO

Several cannabinoids afforded neuroprotection in experimental models of Huntington's disease (HD). We investigated whether a 1:1 combination of botanical extracts enriched in either ∆8-tetrahydrocannabinol (∆8-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex®, is beneficial in R6/2 mice (a transgenic model of HD), as it was previously shown to have positive effects in neurotoxin-based models of HD. We recorded the progression of neurological deficits and the extent of striatal deterioration, using behavioral, in vivo imaging, and biochemical methods in R6/2 mice and their corresponding wild-type mice. The mice were daily treated, starting at 4 weeks after birth, with a Sativex-like combination of phytocannabinoids (equivalent to 3 mg/kg weight of pure CBD + ∆8-THC) or vehicle. R6/2 mice exhibited the characteristic deterioration in rotarod performance that initiated at 6 weeks and progressed up to 10 weeks, and elevated clasping behavior reflecting dystonia. Treatment with the Sativex-like combination of phytocannabinoids did not recover rotarod performance, but markedly attenuated clasping behavior. The in vivo positron emission tomography (PET) analysis of R6/2 animals at 10 weeks revealed a reduced metabolic activity in the basal ganglia, which was partially attenuated by treatment with the Sativex-like combination of phytocannabinoids. Proton nuclear magnetic resonance spectroscopy (H⁺-MRS) analysis of the ex vivo striatum of R6/2 mice at 12 weeks revealed changes in various prognostic markers reflecting events typically found in HD patients and animal models, such as energy failure, mitochondrial dysfunction, and excitotoxicity. Some of these changes (taurine/creatine, taurine/N-acetylaspartate, and N-acetylaspartate/choline ratios) were completely reversed by treatment with the Sativex-like combination of phytocannabinoids. A Sativex-like combination of phytocannabinoids administered to R6/2 mice at the onset of motor symptoms produced certain benefits on the progression of striatal deterioration in these mice, which supports the interest of this cannabinoid-based medicine for the treatment of disease progression in HD patients.


Assuntos
Canabinoides/uso terapêutico , Doença de Huntington/diagnóstico por imagem , Extratos Vegetais/uso terapêutico , Animais , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/metabolismo , Canabidiol , Canabinoides/administração & dosagem , Canabinoides/farmacologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dronabinol , Combinação de Medicamentos , Locomoção , Camundongos , Mitocôndrias/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia
11.
EMBO J ; 31(3): 534-51, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22157745

RESUMO

The small GTPase Rac1 plays important roles in many processes, including cytoskeletal reorganization, cell migration, cell-cycle progression and gene expression. The initiation of Rac1 signalling requires at least two mechanisms: GTP loading via the guanosine triphosphate (GTP)/guanosine diphosphate (GDP) cycle, and targeting to cholesterol-rich liquid-ordered plasma membrane microdomains. Little is known about the molecular mechanisms governing this specific compartmentalization. We show that Rac1 can incorporate palmitate at cysteine 178 and that this post-translational modification targets Rac1 for stabilization at actin cytoskeleton-linked ordered membrane regions. Palmitoylation of Rac1 requires its prior prenylation and the intact C-terminal polybasic region and is regulated by the triproline-rich motif. Non-palmitoylated Rac1 shows decreased GTP loading and lower association with detergent-resistant (liquid-ordered) membranes (DRMs). Cells expressing no Rac1 or a palmitoylation-deficient mutant have an increased content of disordered membrane domains, and markers of ordered membranes isolated from Rac1-deficient cells do not correctly partition in DRMs. Importantly, cells lacking Rac1 palmitoylation show spreading and migration defects. These data identify palmitoylation as a mechanism for Rac1 function in actin cytoskeleton remodelling by controlling its membrane partitioning, which in turn regulates membrane organization.


Assuntos
Membrana Celular/metabolismo , Ácido Palmítico/metabolismo , Proteínas rac1 de Ligação ao GTP/fisiologia , Sequência de Aminoácidos , Biopolímeros/metabolismo , Guanosina Trifosfato/metabolismo , Dados de Sequência Molecular , Prenilação de Proteína , Homologia de Sequência de Aminoácidos
12.
Cell Mol Neurobiol ; 36(4): 513-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26208805

RESUMO

It has been reported that fluoxetine, a selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor, has neuroprotective properties in the lithium-pilocarpine model of status epilepticus (SE) in rats. The aim of the present study was to investigate the effect of 5-HT depletion by short-term administration of p-chlorophenylalanine (PCPA), a specific tryptophan hydroxylase inhibitor, on the brain hypometabolism and neurodegeneration induced in the acute phase of this SE model. Our results show that 5-HT depletion did modify neither the brain basal metabolic activity nor the lithium-pilocarpine-induced hypometabolism when evaluated 3 days after the insult. In addition, hippocampal neurodegeneration and astrogliosis triggered by lithium-pilocarpine were not exacerbated by PCPA treatment. These findings point out that in the early latent phase of epileptogenesis, non-5-HT-mediated actions may contribute, at least in some extent, to the neuroprotective effects of fluoxetine in this model of SE.


Assuntos
Hipocampo/metabolismo , Hipocampo/patologia , Degeneração Neural/patologia , Serotonina/deficiência , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia , Animais , Modelos Animais de Doenças , Fenclonina , Gliose/patologia , Hipocampo/diagnóstico por imagem , Lítio , Imageamento por Ressonância Magnética , Masculino , Degeneração Neural/diagnóstico por imagem , Degeneração Neural/metabolismo , Pilocarpina , Tomografia por Emissão de Pósitrons , Ratos Sprague-Dawley , Estado Epiléptico/diagnóstico por imagem , Fatores de Tempo
13.
EMBO J ; 30(19): 3913-27, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21873980

RESUMO

The activation of the Rac1 GTPase during cell signalling entails its translocation from the cytosol to membranes, release from sequestering Rho GDP dissociation inhibitors (RhoGDI), and GDP/GTP exchange. In addition to those steps, we show here that optimal Rac1 activation during cell signalling requires the engagement of a downstream, cytoskeletal-based feedback loop nucleated around the cytoskeletal protein coronin 1A and the Rac1 exchange factor ArhGEF7. These two proteins form a cytosolic complex that, upon Rac1-driven F-actin polymerization, translocates to juxtamembrane areas where it expands the pool of activated, membrane-bound Rac1. Such activity requires the formation of an F-actin/ArhGEF7-dependent physical complex of coronin 1A with Pak1 and RhoGDIα that, once assembled, promotes the Pak1-dependent dissociation of Rac1 from the Rac1/RhoGDIα complex and subsequent Rac1 activation. Genetic evidence demonstrates that this relay circuit is essential for generating sustained Rac1 activation levels during cell signalling.


Assuntos
Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Proteínas dos Microfilamentos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Células COS , Chlorocebus aethiops , Citosol/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Cinética , Modelos Biológicos , Transporte Proteico , Transdução de Sinais , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
14.
J Cell Sci ; 125(Pt 13): 3097-113, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22454521

RESUMO

The biology of caveolin-1 (Cav1)/caveolae is intimately linked to actin dynamics and adhesion receptors. Caveolar domains are organized in hierarchical levels of complexity from curved or flattened caveolae to large, higher-order caveolar rosettes. We report that stress fibers controlled by Abl kinases and mDia1 determine the level of caveolar domain organization, which conditions the subsequent inward trafficking of caveolar domains induced upon loss of cell adhesion from the extracellular matrix. Abl-deficient cells have fewer stress fibers, a smaller pool of stress-fiber co-aligned Cav1 and increased clustering of Cav1/caveolae at the cell surface. Defective caveolar linkage to stress fibers prevents the formation of big caveolar rosettes upon loss of cell adhesion, correlating with a lack of inward trafficking. Live imaging of stress fibers and Cav1 showed that the actin-linked Cav1 pool loses its spatial organization in the absence of actin polymerization and is dragged and clustered by depolymerizing filaments. We identified mDia1 as the actin polymerization regulator downstream of Abl kinases that controls the stress-fiber-linked Cav1 pool. mDia1 knockdown results in Cav1/caveolae clustering and defective inward trafficking upon loss of cell adhesion. By contrast, cell elongation imposed by the excess of stress fibers induced by active mDia1 flattens caveolae. Furthermore, active mDia1 rescues the actin co-aligned Cav1 pool and Cav1 inward trafficking upon loss of adhesion in Abl-deficient cells. Thus, caveolar domain organization and trafficking are tightly coupled to adhesive and stress fiber regulatory pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cavéolas/metabolismo , Caveolina 1/metabolismo , Proteínas Tirosina Quinases/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cavéolas/fisiologia , Cavéolas/ultraestrutura , Caveolina 1/genética , Adesão Celular , Clonagem Molecular , Forminas , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Microscopia Eletrônica , Plasmídeos/genética , Plasmídeos/metabolismo , Polimerização , Estrutura Terciária de Proteína , Transporte Proteico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fibras de Estresse/metabolismo , Fibras de Estresse/fisiologia
15.
Cogn Affect Behav Neurosci ; 14(4): 1286-99, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24838172

RESUMO

Previous research on emotion in language has mainly concerned the impact of emotional information on several aspects of lexico-semantic analyses of single words. However, affective influences on morphosyntactic processing are less understood. In the present study, we focused on the impact of negative valence in the processing of gender agreement relations. Event-related potentials (ERPs) were recorded while participants read three-word phrases and performed a syntactic judgment task. Negative and neutral adjectives could agree or disagree in gender with the preceding noun. At an electrophysiological level, the amplitude of a left anterior negativity (LAN) to gender agreement mismatches decreased in negative words, relative to neutral words. The behavioral data suggested that LAN amplitudes might be indexing the processing costs associated with the detection of gender agreement errors, since the detection of gender mismatches resulted in faster and more accurate responses than did the detection of correct gender agreement relations. According to this view, it seems that negative content facilitated the processes implicated in the early detection of gender agreement mismatches. However, gender agreement violations in negative words triggered processes involved in the reanalysis and repair of the syntactic structure, as reflected in larger P600 amplitudes to incorrect than to correct phrases, irrespective of their emotional valence.


Assuntos
Emoções/fisiologia , Potenciais Evocados/fisiologia , Identidade de Gênero , Julgamento/fisiologia , Semântica , Adolescente , Adulto , Análise de Variância , Mapeamento Encefálico , Eletroencefalografia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Tempo de Reação/fisiologia , Leitura , Adulto Jovem
16.
Cell Commun Signal ; 12: 57, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25238970

RESUMO

BACKGROUND: Adhesion and migration are relevant physiological functions that must be regulated by the cell under both normal and pathological conditions. The dioxin receptor (AhR) has emerged as a transcription factor regulating both processes in mesenchymal, epithelial and endothelial cells. Indirect results suggest that AhR could cooperate not only with additional transcription factors but also with membrane-associated proteins to drive such processes. RESULTS: In this study, we have used immortalized and primary dermal fibroblasts from wild type (AhR+/+) and AhR-null (AhR-/-) mice to show that AhR modulates membrane distribution and mobilization of caveolin-1 (Cav-1) during directional cell migration. AhR co-immunoprecipitated with Cav-1 and a fraction of both proteins co-localized to detergent-resistant membrane microdomains (DRM). Consistent with a role of AhR in the process, AhR-/- cells had a significant reduction in Cav-1 in DRMs. Moreover, high cell density reduced AhR nuclear levels and moved Cav-1 from DRMs to the soluble membrane in AhR+/+ but not in AhR-/- cells. Tyrosine-14 phosphorylation had a complex role in the mechanism since its upregulation reduced Cav-1 in DRMs in both AhR+/+ and AhR-/-cells, despite the lower basal levels of Y14-Cav-1 in the null cells. Fluorescence recovery after photobleaching revealed that AhR knock-down blocked Cav-1 transport to the plasma membrane, a deficit possibly influencing its depleted levels in DRMs. Membrane distribution of Cav-1 in AhR-null fibroblasts correlated with higher levels of cholesterol and with disrupted membrane microdomains, whereas addition of exogenous cholesterol changed the Cav-1 distribution of AhR+/+ cells to the null phenotype. Consistently, higher cholesterol levels enhanced caveolae-dependent endocytosis in AhR-null cells. CONCLUSIONS: These results suggest that AhR modulates Cav-1 distribution in migrating cells through the control of cholesterol-enriched membrane microdomains. Our study also supports the likely possibility of membrane-related, transcription factor independent, functions of AhR.


Assuntos
Caveolina 1/metabolismo , Movimento Celular/fisiologia , Colesterol/metabolismo , Fibroblastos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Células Cultivadas , Endocitose , Fibroblastos/fisiologia , Camundongos , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética
17.
Curr Biol ; 34(6): R244-R246, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531317

RESUMO

During cancer progression, tumor cells need to disseminate by remodeling the extracellular tumor matrix. A recent study sheds light on the intricate cooperation between caveolae and invadosomes that facilitates the spread of cancer cells.


Assuntos
Podossomos , Humanos , Podossomos/patologia , Cavéolas , Matriz Extracelular , Invasividade Neoplásica/patologia , Crime
18.
J Cell Sci ; 124(Pt 19): 3189-97, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21940791

RESUMO

Anoikis (or cell-detachment-induced apoptosis) is a self-defense strategy that organisms use to eliminate 'misplaced' cells, i.e. cells that are in an inappropriate location. Occasionally, detached or misplaced cells can overcome anoikis and survive for a certain period of time in the absence of the correct signals from the extracellular matrix (ECM). If cells are able to adapt to their new environment, then they have probably become anchorage-independent, which is one of the hallmarks of cancer cells. Anoikis resistance and anchorage-independency allow tumor cells to expand and invade adjacent tissues, and to disseminate through the body, giving rise to metastasis. Thus, overcoming anoikis is a crucial step in a series of changes that a tumor cell undergoes during malignant transformation. Tumor cells have developed a variety of strategies to bypass or overcome anoikis. Some strategies consist of adaptive cellular changes that allow the cells to behave as they would in the correct environment, so that induction of anoikis is aborted. Other strategies aim to counteract the negative effects of anoikis induction by hyperactivating survival and proliferative cascades. The recently discovered processes of autophagy and entosis also highlight the contribution of these mechanisms to rendering the cells in a dormant state until they receive a signal initiated at the ECM, thereby circumventing anoikis. In all situations, the final outcome is the ability of the tumor to grow and metastasize. A better understanding of the mechanisms underlying anoikis resistance could help to counteract tumor progression and prevent metastasis formation.


Assuntos
Anoikis , Adesão Celular , Transformação Celular Neoplásica , Neoplasias/patologia , Animais , Entose , Matriz Extracelular/metabolismo , Humanos , Integrinas/fisiologia , Metástase Neoplásica , Neoplasias/fisiopatologia , Estresse Oxidativo , Receptores Proteína Tirosina Quinases/fisiologia , Transdução de Sinais
19.
J Cell Sci ; 124(Pt 16): 2763-76, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807941

RESUMO

Caveolae are relatively stable membrane invaginations that compartmentalize signaling, regulate lipid metabolism and mediate viral entry. Caveolae are closely associated with actin fibers and internalize in response to diverse stimuli. Loss of cell adhesion is known to induce rapid and robust caveolae internalization and trafficking toward a Rab11-positive recycling endosome; however, pathways governing this process are poorly understood. Here, we report that filamin A is required to maintain the F-actin-dependent linear distribution of caveolin-1. High spatiotemporal resolution particle tracking of caveolin-1-GFP vesicles by total internal reflection fluorescence (TIRF) microscopy revealed that FLNa is required for the F-actin-dependent arrest of caveolin-1 vesicles in a confined area and their stable anchorage to the plasma membrane. The linear distribution and anchorage of caveolin-1 vesicles are both required for proper caveolin-1 inwards trafficking. De-adhesion-triggered caveolae inward trafficking towards a recycling endosome is impaired in FLNa-depleted HeLa and FLNa-deficient M2-melanoma cells. Inwards trafficking of caveolin-1 requires both the ability of FLNa to bind actin and cycling PKCα-dependent phosphorylation of FLNa on Ser2152 after cell detachment.


Assuntos
Actinas/metabolismo , Cavéolas/metabolismo , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Proteínas Contráteis/metabolismo , Proteínas dos Microfilamentos/metabolismo , Cavéolas/ultraestrutura , Adesão Celular , Proteínas Contráteis/genética , Endossomos/metabolismo , Filaminas , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , Microscopia de Interferência , Fosforilação/genética , Ligação Proteica/genética , Proteína Quinase C/metabolismo , Transporte Proteico , RNA Interferente Pequeno/genética
20.
Cogn Affect Behav Neurosci ; 13(2): 284-96, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23263839

RESUMO

We studied the effect of facial expression primes on the evaluation of target words through a variant of the affective priming paradigm. In order to make the affective valence of the faces irrelevant to the task, the participants were assigned a double prime-target task in which they were unpredictably asked either to identify the gender of the face or to evaluate whether the word was pleasant or unpleasant. Behavioral and electrophysiological (event-related potential, or ERP) indices of affective priming were analyzed. Temporal and spatial versions of principal components analyses were used to detect and quantify those ERP components associated with affective priming. Although no significant behavioral priming was observed, electrophysiological indices showed a reverse priming effect, in the sense that the amplitude of the N400 was higher in response to congruent than to incongruent negative words. Moreover, a late positive potential (LPP), peaking around 700 ms, was sensitive to affective valence but not to prime-target congruency. This pattern of results is consistent with previous accounts of ERP effects in the affective priming paradigm that have linked the LPP with evaluative priming and the N400 with semantic priming. Our proposed explanation of the N400 priming effects obtained in the present study is based on two assumptions: a double check of affective stimuli in terms of valence and specific emotion content, and the differential specificities of facial expressions of positive and negative emotions.


Assuntos
Afeto , Mapeamento Encefálico , Emoções/fisiologia , Potenciais Evocados/fisiologia , Expressão Facial , Adolescente , Adulto , Análise de Variância , Eletroencefalografia , Feminino , Humanos , Masculino , Estimulação Luminosa , Tempo de Reação/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA