Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 21(12): 4808-4821, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31608584

RESUMO

The host plant is often the main variable explaining population structure in fungal plant pathogens, because specialization contributes to reduce gene flow between populations associated with different hosts. Previous population genetic analysis revealed that French populations of the grey mould pathogen Botrytis cinerea were structured by hosts tomato and grapevine, suggesting host specialization in this highly polyphagous pathogen. However, these findings raised questions about the magnitude of this specialization and the possibility of specialization to other hosts. Here we report specialization of B. cinerea populations to tomato and grapevine hosts but not to other tested plants. Population genetic analysis revealed two pathogen clusters associated with tomato and grapevine, while the other clusters co-occurred on hydrangea, strawberry and bramble. Measurements of quantitative pathogenicity were consistent with host specialization of populations found on tomato, and to a lesser extent, populations found on grapevine. Pathogen populations from hydrangea and strawberry appeared to be generalist, while populations from bramble may be weakly specialized. Our results suggest that the polyphagous B. cinerea is more accurately described as a collection of generalist and specialist individuals in populations. This work opens new perspectives for grey mould management, while suggesting spatial optimization of crop organization within agricultural landscapes.


Assuntos
Botrytis/fisiologia , Doenças das Plantas/microbiologia , Botrytis/genética , Fragaria/microbiologia , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Solanum lycopersicum/microbiologia , Vitis/microbiologia
2.
Environ Microbiol ; 20(7): 2469-2482, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29708647

RESUMO

While abscisic acid (ABA) is known as a hormone produced by plants through the carotenoid pathway, a small number of phytopathogenic fungi are also able to produce this sesquiterpene but they use a distinct pathway that starts with the cyclization of farnesyl diphosphate (FPP) into 2Z,4E-α-ionylideneethane which is then subjected to several oxidation steps. To identify the sesquiterpene cyclase (STC) responsible for the biosynthesis of ABA in fungi, we conducted a genomic approach in Botrytis cinerea. The genome of the ABA-overproducing strain ATCC58025 was fully sequenced and five STC-coding genes were identified. Among them, Bcstc5 exhibits an expression profile concomitant with ABA production. Gene inactivation, complementation and chemical analysis demonstrated that BcStc5/BcAba5 is the key enzyme responsible for the key step of ABA biosynthesis in fungi. Unlike what is observed for most of the fungal secondary metabolism genes, the key enzyme-coding gene Bcstc5/Bcaba5 is not clustered with the other biosynthetic genes, i.e., Bcaba1 to Bcaba4 that are responsible for the oxidative transformation of 2Z,4E-α-ionylideneethane. Finally, our study revealed that the presence of the Bcaba genes among Botrytis species is rare and that the majority of them do not possess the ability to produce ABA.


Assuntos
Ácido Abscísico/biossíntese , Botrytis/metabolismo , Carbono-Carbono Liases/metabolismo , Ácido Abscísico/análogos & derivados , Sequência de Bases , Botrytis/enzimologia , Botrytis/genética , Carotenoides/metabolismo , Genes Fúngicos , Oxirredução , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo
3.
Fungal Genet Biol ; 96: 33-46, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27721016

RESUMO

Botrydial (BOT) is a non-host specific phytotoxin produced by the polyphagous phytopathogenic fungus Botrytis cinerea. The genomic region of the BOT biosynthetic gene cluster was investigated and revealed two additional genes named Bcbot6 and Bcbot7. Analysis revealed that the G+C/A+T-equilibrated regions that contain the Bcbot genes alternate with A+T-rich regions made of relics of transposable elements that have undergone repeat-induced point mutations (RIP). Furthermore, BcBot6, a Zn(II)2Cys6 putative transcription factor was identified as a nuclear protein and the major positive regulator of BOT biosynthesis. In addition, the phenotype of the ΔBcbot6 mutant indicated that BcBot6 and therefore BOT are dispensable for the development, pathogenicity and response to abiotic stresses in the B. cinerea strain B05.10. Finally, our data revealed that B. pseudocinerea, that is also polyphagous and lives in sympatry with B. cinerea, lacks the ability to produce BOT. Identification of BcBot6 as the major regulator of BOT synthesis is the first step towards a comprehensive understanding of the complete regulation network of BOT synthesis and of its ecological role in the B. cinerea life cycle.


Assuntos
Aldeídos/metabolismo , Botrytis/genética , Compostos Bicíclicos com Pontes/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Família Multigênica , Fatores de Transcrição/metabolismo , Sequência Rica em At , Botrytis/metabolismo , Botrytis/patogenicidade , Elementos de DNA Transponíveis , DNA Fúngico , Proteínas Fúngicas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Virulência
4.
Mol Plant Microbe Interact ; 28(11): 1167-80, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26267356

RESUMO

Mature grapevine berries at the harvesting stage (MB) are very susceptible to the gray mold fungus Botrytis cinerea, while veraison berries (VB) are not. We conducted simultaneous microscopic and transcriptomic analyses of the pathogen and the host to investigate the infection process developed by B. cinerea on MB versus VB, and the plant defense mechanisms deployed to stop the fungus spreading. On the pathogen side, our genome-wide transcriptomic data revealed that B. cinerea genes upregulated during infection of MB are enriched in functional categories related to necrotrophy, such as degradation of the plant cell wall, proteolysis, membrane transport, reactive oxygen species (ROS) generation, and detoxification. Quantitative-polymerase chain reaction on a set of representative genes related to virulence and microscopic observations further demonstrated that the infection is also initiated on VB but is stopped at the penetration stage. On the plant side, genome-wide transcriptomic analysis and metabolic data revealed a defense pathway switch during berry ripening. In response to B. cinerea inoculation, VB activated a burst of ROS, the salicylate-dependent defense pathway, the synthesis of the resveratrol phytoalexin, and cell-wall strengthening. On the contrary, in infected MB, the jasmonate-dependent pathway was activated, which did not stop the fungal necrotrophic process.


Assuntos
Botrytis/genética , Resistência à Doença/genética , Frutas/genética , Doenças das Plantas/genética , Vitis/genética , Botrytis/patogenicidade , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/microbiologia , Ciclopentanos/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/microbiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Interações Hospedeiro-Patógeno/genética , Análise de Sequência com Séries de Oligonucleotídeos , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salicilatos/metabolismo , Sesquiterpenos/metabolismo , Estilbenos/metabolismo , Virulência/genética , Vitis/crescimento & desenvolvimento , Vitis/microbiologia , Fitoalexinas
5.
PLoS Genet ; 7(8): e1002230, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21876677

RESUMO

Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.


Assuntos
Ascomicetos/genética , Botrytis/genética , Genoma Fúngico , Doenças das Plantas/microbiologia , Elementos de DNA Transponíveis , Genes Fúngicos , Genômica , Filogenia , Doenças das Plantas/genética , Sintenia
6.
PLoS Pathog ; 5(12): e1000696, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20019793

RESUMO

The grey mould fungus Botrytis cinerea causes losses of commercially important fruits, vegetables and ornamentals worldwide. Fungicide treatments are effective for disease control, but bear the risk of resistance development. The major resistance mechanism in fungi is target protein modification resulting in reduced drug binding. Multiple drug resistance (MDR) caused by increased efflux activity is common in human pathogenic microbes, but rarely described for plant pathogens. Annual monitoring for fungicide resistance in field isolates from fungicide-treated vineyards in France and Germany revealed a rapidly increasing appearance of B. cinerea field populations with three distinct MDR phenotypes. All MDR strains showed increased fungicide efflux activity and overexpression of efflux transporter genes. Similar to clinical MDR isolates of Candida yeasts that are due to transcription factor mutations, all MDR1 strains were shown to harbor activating mutations in a transcription factor (Mrr1) that controls the gene encoding ABC transporter AtrB. MDR2 strains had undergone a unique rearrangement in the promoter region of the major facilitator superfamily transporter gene mfsM2, induced by insertion of a retrotransposon-derived sequence. MDR2 strains carrying the same rearranged mfsM2 allele have probably migrated from French to German wine-growing regions. The roles of atrB, mrr1 and mfsM2 were proven by the phenotypes of knock-out and overexpression mutants. As confirmed by sexual crosses, combinations of mrr1 and mfsM2 mutations lead to MDR3 strains with higher broad-spectrum resistance. An MDR3 strain was shown in field experiments to be selected against sensitive strains by fungicide treatments. Our data document for the first time the rising prevalence, spread and molecular basis of MDR populations in a major plant pathogen in agricultural environments. These populations will increase the risk of grey mould rot and hamper the effectiveness of current strategies for fungicide resistance management.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Botrytis/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Vitis/microbiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Botrytis/genética , Produtos Agrícolas/microbiologia , Vinho/microbiologia , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
7.
FEMS Microbiol Lett ; 277(1): 1-10, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17986079

RESUMO

Botrytis cinerea is responsible for the gray mold disease on more than 200 host plants. This necrotrophic ascomycete displays the capacity to kill host cells through the production of toxins, reactive oxygen species and the induction of a plant-produced oxidative burst. Thanks to an arsenal of degrading enzymes, B. cinerea is then able to feed on different plant tissues. Recent molecular approaches, for example on characterizing components of signal transduction pathways, show that this fungus shares conserved virulence factors with other phytopathogens, but also highlight some Botrytis-specific features. The discovery of some first strain-specific virulence factors, together with population data, even suggests a possible host adaptation of the strains. The availability of the genome sequence now stimulates the development of high-throughput functional analysis to decipher the mechanisms involved in the large host range of this species.


Assuntos
Botrytis/patogenicidade , Fabaceae/microbiologia , Doenças das Plantas/microbiologia , Botrytis/classificação , Botrytis/genética , Botrytis/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micotoxinas/metabolismo , Folhas de Planta/microbiologia , Explosão Respiratória , Transdução de Sinais , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
Mol Plant Microbe Interact ; 18(6): 602-12, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15986930

RESUMO

The micrographic phytopathogen Botrytis cinerea causes gray mold diseases in a large number of dicotyledonous crop plants and ornamentals. Colonization of host tissue is accompanied by rapid killing of plant cells ahead of the growing hyphen, probably caused by secretion of nonspecific phytotoxins, e.g., the sesquiterpene botrydial. Although all pathogenic strains tested so far had been shown to secrete botrydial and although the toxin causes comparable necrotic lesions as infection by the fungus, the role of botrydial in the infection process has not been elucidated so far. Here, we describe the functional characterization of bcbot1, encoding a P450 monooxygenase and provide evidence that it is involved in the botrydial pathway, i.e., it represents the first botrydial biosynthetic gene identified. We show that bcbot1 is expressed in planta and that expression in vitro and in planta is controlled by an alpha-subunit of a heterotrimeric GTP-binding protein, BCG1. Deletion of bcbot1 in three standard strains of B. cinerea shows that the effect on virulence (on several host plants) is strain-dependent; only deletion in one of the strains (T4) led to reduced virulence.


Assuntos
Aldeídos/metabolismo , Botrytis/genética , Compostos Bicíclicos com Pontes/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Aldeídos/química , Botrytis/metabolismo , Compostos Bicíclicos com Pontes/química , Mapeamento Cromossômico , Meios de Cultivo Condicionados/química , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Modelos Moleculares , Estrutura Molecular , Família Multigênica/genética , Mutação , Phaseolus/genética , Phaseolus/metabolismo , Phaseolus/microbiologia , Transdução de Sinais , Virulência/genética
9.
PLoS One ; 7(10): e47840, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23118899

RESUMO

Botrytis cinerea is an aggressive plant pathogen causing gray mold disease on various plant species. In this study, we identified the genetic origin for significantly differing phenotypes of the two sequenced B. cinerea isolates, B05.10 and T4, with regard to light-dependent differentiation, oxalic acid (OA) formation and virulence. By conducting a map-based cloning approach we identified a single nucleotide polymorphism (SNP) in an open reading frame encoding a VELVET gene (bcvel1). The SNP in isolate T4 results in a truncated protein that is predominantly found in the cytosol in contrast to the full-length protein of isolate B05.10 that accumulates in the nuclei. Deletion of the full-length gene in B05.10 resulted in the T4 phenotype, namely light-independent conidiation, loss of sclerotial development and oxalic acid production, and reduced virulence on several host plants. These findings indicate that the identified SNP represents a loss-of-function mutation of bcvel1. In accordance, the expression of the B05.10 copy in T4 rescued the wild-type/B05.10 phenotype. BcVEL1 is crucial for full virulence as deletion mutants are significantly hampered in killing and decomposing plant tissues. However, the production of the two best known secondary metabolites, the phytotoxins botcinic acid and botrydial, are not affected by the deletion of bcvel1 indicating that other factors are responsible for reduced virulence. Genome-wide expression analyses of B05.10- and Δbcvel1-infected plant material revealed a number of genes differentially expressed in the mutant: while several protease- encoding genes are under-expressed in Δbcvel1 compared to the wild type, the group of over-expressed genes is enriched for genes encoding sugar, amino acid and ammonium transporters and glycoside hydrolases reflecting the response of Δbcvel1 mutants to nutrient starvation conditions.


Assuntos
Botrytis , Proteínas Fúngicas/genética , Folhas de Planta , Solanum lycopersicum , Fatores de Virulência/genética , Virulência/genética , Sequência de Bases , Botrytis/genética , Botrytis/metabolismo , Botrytis/patogenicidade , Clonagem Molecular , Luz , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Mutação , Ácido Oxálico/química , Doenças das Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Policetídeos/química , Policetídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Virulência/fisiologia
10.
ACS Chem Biol ; 3(12): 791-801, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19035644

RESUMO

The fungus Botrytis cinerea is the causal agent of the economically important gray mold disease that affects more than 200 ornamental and agriculturally important plant species. B. cinerea is a necrotrophic plant pathogen that secretes nonspecific phytotoxins, including the sesquiterpene botrydial and the polyketide botcinic acid. The region surrounding the previously characterized BcBOT1 gene has now been identified as the botrydial biosynthetic gene cluster.Five genes including BcBOT1 and BcBOT2 were shown by quantitative reverse transcription-PCR to be co-regulated through the calcineurin signaling pathway. Inactivation of the BcBOT2 gene, encoding a putative sesquiterpene cyclase, abolished botrydial biosynthesis, which could be restored by in trans complementation.Inactivation of BcBOT2 also resulted in overproduction of botcinic acid that was observed to be strain-dependent. Recombinant BcBOT2 protein converted farnesyl diphosphate to the parent sesquiterpene of the botrydial biosynthetic pathway, the tricyclic alcohol presilphiperfolan-8beta-ol.


Assuntos
Botrytis/enzimologia , Botrytis/genética , Família Multigênica/genética , Sesquiterpenos/metabolismo , Botrytis/patogenicidade
11.
Mol Microbiol ; 50(5): 1451-65, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14651630

RESUMO

Calcineurin phosphatase and cyclophilin A are cellular components involved in fungal morphogenesis and virulence. Their roles were investigated in the phytopathogenic fungus Botrytis cinerea using gene inactivation, drug inhibition and cDNA macroarrays approaches. First, the BCP1 gene coding for cyclophilin A was identified and inactivated by homologous recombination. The bcp1Delta null mutant obtained was still able to develop infection structures but was altered in symptom development on bean and tomato leaves. Opposite to this, calcineurin inhibition using cyclosporin A (CsA) modified hyphal morphology and prevented infection structure formation. CsA drug pattern signature on macroarrays allowed the identification of 18 calcineurin-dependent (CND) genes among 2839 B. cinerea genes. Among the co-regulated CND genes, three were shown to be organized as a physical cluster that could be involved in secondary metabolism. The signature of BCP1 inactivation on macroarrays allowed the identification of only three BCP1 cyclophilin-dependent (CPD) genes that were different from CND genes. Finally, no CsA drug pattern signature was observed in the bcp1Delta null mutant which provided a molecular target validation of the drug.


Assuntos
Botrytis/patogenicidade , Calcineurina/metabolismo , Ciclofilina A/metabolismo , Proteínas Fúngicas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Allium/microbiologia , Botrytis/genética , Botrytis/fisiologia , Inibidores de Calcineurina , Ciclofilina A/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Solanum lycopersicum/microbiologia , Dados de Sequência Molecular , Folhas de Planta/microbiologia , Vicia/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA