Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36411673

RESUMO

BACKGROUND: Network medicine is an emerging area of research that focuses on delving into the molecular complexity of the disease, leading to the discovery of network biomarkers and therapeutic target discovery. Amyotrophic lateral sclerosis (ALS) is a complicated rare disease with unknown pathogenesis and no available treatment. In ALS, network properties appear to be potential biomarkers that can be beneficial in disease-related applications when explored independently or in tandem with machine learning (ML) techniques. OBJECTIVE: This systematic literature review explores recent trends in network medicine and implementations of network-based ML algorithms in ALS. We aim to provide an overview of the identified primary studies and gather details on identifying the potential biomarkers and delineated pathways. METHODS: The current study consists of searching for and investigating primary studies from PubMed and Dimensions.ai, published between 2018 and 2022 that reported network medicine perspectives and the coupling of ML techniques. Each abstract and full-text study was individually evaluated, and the relevant studies were finally included in the review for discussion once they met the inclusion and exclusion criteria. RESULTS: We identified 109 eligible publications from primary studies representing this systematic review. The data coalesced into two themes: application of network science to identify disease modules and promising biomarkers in ALS, along with network-based ML approaches. Conclusion This systematic review gives an overview of the network medicine approaches and implementations of network-based ML algorithms in ALS to determine new disease genes, and identify critical pathways and therapeutic target discovery for personalized treatment.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Biomarcadores/metabolismo , Aprendizado de Máquina
2.
Brief Bioinform ; 22(2): 1346-1360, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33386025

RESUMO

The global pandemic crisis, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed the lives of millions of people across the world. Development and testing of anti-SARS-CoV-2 drugs or vaccines have not turned to be realistic within the timeframe needed to combat this pandemic. Here, we report a comprehensive computational approach to identify the multi-targeted drug molecules against the SARS-CoV-2 proteins, whichare crucially involved in the viral-host interaction, replication of the virus inside the host, disease progression and transmission of coronavirus infection. Virtual screening of 75 FDA-approved potential antiviral drugs against the target proteins, spike (S) glycoprotein, human angiotensin-converting enzyme 2 (hACE2), 3-chymotrypsin-like cysteine protease (3CLpro), cathepsin L (CTSL), nucleocapsid protein, RNA-dependent RNA polymerase (RdRp) and non-structural protein 6 (NSP6), resulted in the selection of seven drugs which preferentially bind to the target proteins. Further, the molecular interactions determined by molecular dynamics simulation revealed that among the 75 drug molecules, catechin can effectively bind to 3CLpro, CTSL, RBD of S protein, NSP6 and nucleocapsid protein. It is more conveniently involved in key molecular interactions, showing binding free energy (ΔGbind) in the range of -5.09 kcal/mol (CTSL) to -26.09 kcal/mol (NSP6). At the binding pocket, catechin is majorly stabilized by the hydrophobic interactions, displays ΔEvdW values: -7.59 to -37.39 kcal/mol. Thus, the structural insights of better binding affinity and favorable molecular interaction of catechin toward multiple target proteins signify that catechin can be potentially explored as a multi-targeted agent against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Catequina/farmacologia , Polifenóis/farmacologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Catequina/química , Catequina/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Polifenóis/uso terapêutico
3.
Appl Microbiol Biotechnol ; 106(11): 4223-4235, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35648145

RESUMO

The peptide transport (PTR) or proton-dependent oligopeptide transporter (POT) family exploits the inwardly directed proton motive force to facilitate the cellular uptake of di/tripeptides. Interestingly, some representatives are also shown to import peptide-based antifungals in certain Candida species. Thus, the identification and characterization of PTR transporters serve as an essential first step for their potential usage as antifungal peptide uptake systems. Herein, we present a genome-wide inventory of the PTR transporters in five prominent Candida species. Our study identifies 2 PTR transporters each in C. albicans and C. dubliniensis, 1 in C. glabrata, 4 in C. parapsilosis, and 3 in C. auris. Notably, despite all representatives retaining the conserved features seen in the PTR family, there exist two distinct classes of PTR transporters that differ in terms of their sequence identities and lengths of certain extracellular and intracellular segments. Further, we also evaluated the contribution of each PTR protein of the newly emerged multi-drug-resistant C. auris in di/tripeptide uptake. Notably, deletion of two PTR genes BNJ08_003830 and BNJ08_005124 led to a marked reduction in the transport capabilities of several tested di/tripeptides. However, all three genes could complement the role of native PTR2 gene of Saccharomyces cerevisiae, albeit to varied levels. Besides, BNJ08_005124 deletion also resulted in increased resistance toward the peptide-nucleoside drug Nikkomycin Z as well as the glucosamine-6-phosphate synthase inhibitor, L-norvalyl-N3-(4-methoxyfumaroyl)-L-2,3-diaminopropionoic acid (Nva-FMDP), pointing toward its predominant role in their uptake mechanism. Altogether, the study provides an important template for future structure-function investigations of PTR transporters in Candida species. KEY POINTS: • Candida genome encodes for two distinct classes of PTR transporters. • Candida auris encodes for 3 PTR transporters with different specificities. • BNJ08_005124 in C. auris is involved in the uptake of Nikkomycin Z and Nva-FMDP.


Assuntos
Candida auris , Candida , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Candida/genética , Candida albicans , Candida glabrata/genética , Testes de Sensibilidade Microbiana , Peptídeos/metabolismo
4.
Appl Microbiol Biotechnol ; 106(21): 7085-7097, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36184687

RESUMO

The last decade has witnessed the rise of an extremely threatening healthcare-associated multidrug-resistant non-albicans Candida (NAC) species, Candida auris. Since besides target alterations, efflux mechanisms contribute maximally to antifungal resistance, it is imperative to investigate their contributions in this pathogen. Of note, within the major facilitator superfamily (MFS) of efflux pumps, drug/H+ antiporter family 1 (DHA1) has been established as a predominant contributor towards xenobiotic efflux. Our study provides a complete landscape of DHA1 transporters encoded in the genome of C. auris. This study identifies 14 DHA1 transporters encoded in the genome of the pathogen. We also construct deletion and heterologous overexpression strains for the most important DHA1 drug transporter, viz., CauMdr1 to map the spectrum of its substrates. While the knockout strain did not show any significant changes in the resistance patterns against most of the tested substrates, the ortholog when overexpressed in a minimal background Saccharomyces cerevisiae strain, AD1-8u-, showed significant enhancement in the minimum inhibitory concentrations (MICs) against a large panel of antifungal molecules. Altogether, the present study provides a comprehensive template for investigating the role of DHA1 members of C. auris in antifungal resistance mechanisms. KEY POINTS: • Fourteen putative DHA1 transporters are encoded in the Candida auris genome. • Deletion of the CauMDR1 gene does not lead to major changes in drug resistance. • CauMdr1 recognizes and effluxes numerous xenobiotics, including prominent azoles.


Assuntos
Antifúngicos , Candida auris , Antifúngicos/farmacologia , Xenobióticos , Candida/genética , Azóis , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/genética , Antiporters , Genômica
5.
J Enzyme Inhib Med Chem ; 36(1): 954-963, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33947294

RESUMO

Anti-breast cancer action of novel human carbonic anhydrase IX (hCA IX) inhibitor BSM-0004 has been investigated using in vitro and in vivo models of breast cancer. BSM-0004 was found to be a potent and selective hCA IX inhibitor with a Ki value of 96 nM. In vitro anticancer effect of BSM-0004 was analysed against MCF 7 and MDA-MA-231 cells, BSM-0004 exerted an effective cytotoxic effect under normoxic and hypoxic conditions, inducing apoptosis in MCF 7 cells. Additionally, this compound significantly regulates the expression of crucial biomarkers associated with apoptosis. The investigation was extended to confirm the efficacy of this hCA IX inhibitor against in vivo model of breast cancer. The results specified that the treatment of BSM-0004 displayed an effective in vivo anticancer effect, reducing tumour growth in a xenograft cancer model. Hence, our investigation delivers an effective anti-breast cancer agent that engenders the anticancer effect by inhibiting hCA IX.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Animais , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
J Mol Struct ; 1233: 130094, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33612858

RESUMO

The sudden increase in the COVID-19 epidemic affected by novel coronavirus 2019 has jeopardized public health worldwide. Hence the necessities of a drug or therapeutic agent that heal SARS-CoV-2 infections are essential requirements. The viral genome encodes a large Polyprotein, further processed by the main protease/ 3C-like protease (3CLpro) and papain-like proteases (PLpro) into 16 nonstructural proteins to form a viral replication complex. These essential functions of 3CLpro and PLpro in virus duplication make these proteases a promising target for discovering potential therapeutic candidates and possible treatment for SARS-CoV-2 infection. This study aimed to screen a unique set of protease inhibitors library against 3CLpro and PLpro of the SARS-CoV-2. A molecular docking study was performed using PyRx to reveal the binding affinity of the selected ligands and molecular dynamic simulations were executed to assess the three-dimensional stability of protein-ligand complexes. The pharmacodynamics parameters of the inhibitors were predicted using admetSAR. The top two ligands (Nafamostat and VR23) based on docking scores were selected for further studies. Selected ligands showed excellent pharmacokinetic properties with proper absorption, bioavailability and minimal toxicity. Due to the emerging and efficiency of remdesivir and dexamethasone in healing COVID-19 patients, ADMET properties of the selected ligands were thus compared with it. MD Simulation studies up to 100 ns revealed the ligands' stability at the target proteins' binding site residues. Therefore, Nafamostat and VR23 may provide potential treatment options against SARS-CoV-2 infections by potentially inhibiting virus duplication though more research is warranted.

7.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769090

RESUMO

GLOBOCAN 2020 estimated more than 19.3 million new cases, and about 10 million patients were deceased from cancer in 2020. Clinical manifestations showed that several growth factor receptors consisting of transmembrane and cytoplasmic tyrosine kinase (TK) domains play a vital role in cancer progression. Receptor tyrosine kinases (RTKs) are crucial intermediaries of the several cellular pathways and carcinogenesis that directly affect the prognosis and survival of higher tumor grade patients. Tyrosine kinase inhibitors (TKIs) are efficacious drugs for targeted therapy of various cancers. Therefore, RTKs have become a promising therapeutic target to cure cancer. A recent report shows that TKIs are vital mediators of signal transduction and cancer cell proliferation, angiogenesis, and apoptosis. In this review, we discuss the structure and function of RTKs to explore their prime role in cancer therapy. Various TKIs have been developed to date that contribute a lot to treating several types of cancer. These TKI based anticancer drug molecules are also discussed in detail, incorporating their therapeutic efficacy, mechanism of action, and side effects. Additionally, this article focuses on TKIs which are running in the clinical trial and pre-clinical studies. Further, to gain insight into the pathophysiological mechanism of TKIs, we also reviewed the impact of RTK resistance on TKI clinical drugs along with their mechanistic acquired resistance in different cancer types.


Assuntos
Antineoplásicos/farmacologia , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Sítios de Ligação , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias/enzimologia , Proteínas Tirosina Quinases/metabolismo
8.
Bioorg Chem ; 95: 103524, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918396

RESUMO

Carbazole based novel multifunctional agents has been rationally designed and synthesized as potential anti-Alzheimer agents. Multi-functional activity of these derivatives have been assessed by performing various in-vitro assays and these compounds appeared to be potent AChE inhibitors, Aß aggregation inhibitors, anti-oxidant and neuroprotective agents. Among the entire series, MT-1 and MT-6 were most potent multifunctional agents which displayed effective and selective AChE inhibition, Aß disaggregation, anti-oxidant and metal chelation action. Neuroprotective activity of MT-6 has been examined against H2O2 induced toxicity in SHSY-5Y cells and they have shown effective neuroprotection. Additionally, MT-6 did not display any significant toxicity in SHSY-5Y cells, indicating its non-toxic nature. Molecular docking and MD simulation studies have been also performed to explore molecular level interaction with AChE and Aß. Finally, MT-6 was evaluated against scopolamine induced dementia model of mice and this compound actively improved memory deficit and cognition impairment in scopolamine treated mice. Thus, novel carbazole derivative MT-6 has been explored as an effective and safe multifunctional agent against AD and this molecule may be used as a suitable lead for development of effective anti-Alzheimer agents in future.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Carbazóis/uso terapêutico , Desenho de Fármacos , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Simulação por Computador , Humanos , Peróxido de Hidrogênio/farmacologia , Técnicas In Vitro , Microscopia Eletrônica de Transmissão , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo
9.
Biochem J ; 475(10): 1701-1719, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29686043

RESUMO

Misfolding and aggregation of Cu, Zn Superoxide dismutase (SOD1) is involved in the neurodegenerative disease, amyotrophic lateral sclerosis. Many studies have shown that metal-depleted, monomeric form of SOD1 displays substantial local unfolding dynamics and is the precursor for aggregation. Here, we have studied the structure and dynamics of different apo monomeric SOD1 variants associated with unfolding and aggregation in aqueous trifluoroethanol (TFE) through experiments and simulation. TFE induces partially unfolded ß-sheet-rich extended conformations in these SOD1 variants, which subsequently develops aggregates with fibril-like characteristics. Fibrillation was achieved more easily in disulfide-reduced monomeric SOD1 when compared with wild-type and mutant monomeric SOD1. At higher concentrations of TFE, a native-like structure with the increase in α-helical content was observed. The molecular dynamics simulation results illustrate distinct structural dynamics for different regions of SOD1 variants and show uniform local unfolding of ß-strands. The strands protected by the zinc-binding and electrostatic loops were found to unfold first in 20% (v/v) TFE, leading to a partial unfolding of ß-strands 4, 5, and 6 which are prone to aggregation. Our results thus shed light on the role of local unfolding and conformational dynamics in SOD1 misfolding and aggregation.


Assuntos
Simulação de Dinâmica Molecular , Mutação , Dobramento de Proteína , Estrutura Secundária de Proteína , Superóxido Dismutase-1/química , Trifluoretanol/farmacologia , Estabilidade Enzimática , Humanos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
10.
Biopolymers ; 109(3): e23102, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29369331

RESUMO

Alterations in the local dynamics of Cu/Zn Superoxide dismutase (SOD1) due to mutations affect the protein folding, stability, and function leading to misfolding and aggregation seen in amyotrophic lateral sclerosis (ALS). Here, we study the structure and dynamics of the most devastating ALS mutation, A4V SOD1 in aqueous trifluoroethanol (TFE) through experiments and simulation. Far-UV circular dichroism (CD) studies shows that TFE at intermediate concentrations (∼15% - 30%) induce partially unfolded ß-sheet-rich extended conformations in A4V SOD1 which subsequently aggregates. Molecular dynamics (MD) simulation results shows that A4V SOD1 increases local dynamics in the active site loops that leads to the destabilization of the ß-barrel and loss of hydrophobic contacts, thus stipulating a basis for aggregation. Free energy landscape (FEL) and essential dynamics (ED) analysis demonstrates the conformational heterogeneity in A4V SOD1. Our results thus shed light on the role of local unfolding and conformational dynamics in aggregation of SOD1.


Assuntos
Superóxido Dismutase-1/metabolismo , Trifluoretanol/química , Esclerose Lateral Amiotrófica/metabolismo , Domínio Catalítico , Dicroísmo Circular , Estabilidade Enzimática , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Dinâmica Molecular , Mutação , Estrutura Secundária de Proteína , Espectrofotometria Ultravioleta , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética
11.
Mol Divers ; 21(1): 163-174, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28039637

RESUMO

A series of novel 2-(4-(4-substituted piperazin-1-yl)benzylidene)hydrazinecarboxamide derivatives has been successfully designed and synthesized to evaluate their potential as carbonic anhydrase (CA) inhibitors. The inhibitory potential of synthesized compounds against human CAI and CAII was evaluated. Compounds 3a-n exhibited [Formula: see text] values between [Formula: see text] against CAI and [Formula: see text] against CAII. Compound 3g was the most active inhibitor, with an [Formula: see text] value of [Formula: see text] against CAII. Molecular docking studies of compound 3g with CAII showed this compound fits nicely in the active site of CAII and it interacts with the zinc ion ([Formula: see text]) along with three histidine residues in the active site. Molecular dynamics simulation studies of compound 3g complexed with CAII also showed essential interactions which were maintained up to 40 ns of simulation. In vivo sub-acute toxicity study using 3g (300 mg/kg) was found non-toxic in adult Wistar rats.


Assuntos
Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Simulação por Computador , Desenho de Fármacos , Hidrazinas/síntese química , Hidrazinas/farmacologia , Animais , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica I/química , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/metabolismo , Inibidores da Anidrase Carbônica/toxicidade , Domínio Catalítico , Técnicas de Química Sintética , Humanos , Hidrazinas/metabolismo , Hidrazinas/toxicidade , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ratos , Ratos Wistar
12.
J Enzyme Inhib Med Chem ; 31(sup2): 174-179, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27314170

RESUMO

A series of N-(5-methyl-isoxazol-3-yl/1,3,4-thiadiazol-2-yl)-4-(3-substitutedphenylureido) benzenesulfonamide derivatives has been designed, synthesized and screened for their in vitro human carbonic anhydrase (hCA; EC 4.2.1.1) inhibition potential. These newly synthesized sulfonamide compounds were assessed against isoforms hCA I, II, VII and XII, with acetazolamide (AAZ) as a reference compound. The majority of these compounds were found quite weak inhibitor against all tested isoforms. Compound 15 showed a modest inhibition potency against hCA I (Ki = 73.7 µM) and hCA VII (Ki = 85.8 µM). Compounds 19 and 25 exhibited hCA II inhibition with Ki values of 96.0 µM and 87.8 µM, respectively. The results of the present study suggest that, although the synthesized derivatives have weak inhibitory potential towards all investigated isoforms, some of them may serve as lead molecules for the further development of selective inhibitors incorporating secondary sulfonamide functionalities, a class of inhibitors for which the inhibition mechanism is poorly understood.


Assuntos
Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Desenho de Fármacos , Sulfonamidas/farmacologia , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Benzenossulfonamidas
13.
J Enzyme Inhib Med Chem ; 31(5): 834-52, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26133357

RESUMO

Novel monocyclic ß-lactam derivatives bearing aryl, phenyl and heterocyclic rings were synthesized as possible antibacterial agents. Cyclization of imines (3h, 3t) with phenylacetic acid in the presence of phosphoryl chloride and triethyl amine did not afford the expected ß-lactams. Instead, highly substituted 1,3-oxazin-4-ones (4h, 4t) were isolated as the only product and confirmed by single crystal X-ray analysis of 4t. The results of antibacterial activity showed that compound 4l exhibited considerable antibacterial activity with MIC and MBC values of 62.5 µg/mL against Klebsiella pneumoniae. Cytotoxicity assay on Chinese Hamster Ovary (CHO) cell line revealed non-cytotoxic behavior of compounds 4d, 4h, 4k and 4l up to 200 µg/mL conc. Molecular docking was performed for compound 4l with penicillin binding protein-5 to identify the nature of interactions. The results of both in silico and in vitro evaluation provide the basis for compound 4l to be carried as a potential lead molecule in the drug discovery pipeline against bacterial infections.


Assuntos
Modelos Moleculares , Simulação de Acoplamento Molecular , Oxazóis , beta-Lactamas , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Ciclização , Klebsiella pneumoniae/efeitos dos fármacos , Estrutura Molecular , Oxazóis/síntese química , Oxazóis/química , Oxazóis/metabolismo , Oxazóis/farmacologia , beta-Lactamas/síntese química , beta-Lactamas/química , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia
14.
Biomed Pharmacother ; 174: 116484, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565058

RESUMO

A novel small molecule based on benzothiazole-piperazine has been identified as an effective multi-target-directed ligand (MTDL) against Alzheimer's disease (AD). Employing a medicinal chemistry approach, combined with molecular docking, MD simulation, and binding free energy estimation, compound 1 emerged as a potent MTDL against AD. Notably, compound 1 demonstrated efficient binding to both AChE and Aß1-42, involving crucial molecular interactions within their active sites. It displayed a binding free energy (ΔGbind) -18.64± 0.16 and -16.10 ± 0.18 kcal/mol against AChE and Aß1-42, respectively. In-silico findings were substantiated through rigorous in vitro and in vivo studies. In vitro analysis confirmed compound 1 (IC50=0.42 µM) as an effective, mixed-type, and selective AChE inhibitor, binding at both the enzyme's catalytic and peripheral anionic sites. Furthermore, compound 1 demonstrated a remarkable ability to reduce the aggregation propensity of Aß, as evidenced by Confocal laser scanning microscopy and TEM studies. Remarkably, in vivo studies exhibited the promising therapeutic potential of compound 1. In a scopolamine-induced memory deficit mouse model of AD, compound 1 showed significantly improved spatial memory and cognition. These findings collectively underscore the potential of compound 1 as a promising therapeutic candidate for the treatment of AD.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Peptídeos beta-Amiloides , Benzotiazóis , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Benzotiazóis/farmacologia , Benzotiazóis/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Peptídeos beta-Amiloides/metabolismo , Acetilcolinesterase/metabolismo , Camundongos , Masculino , Humanos , Piperazinas/farmacologia , Piperazinas/química , Escopolamina , Piperazina/farmacologia , Piperazina/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Simulação de Dinâmica Molecular , Simulação por Computador , Modelos Animais de Doenças , Aprendizagem em Labirinto/efeitos dos fármacos
15.
J Biomol Struct Dyn ; : 1-11, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502682

RESUMO

The activity of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) is essential for the biosynthesis of sialic acid, which is involved in cellular processes in health and diseases. GNE contains an N-terminal epimerase domain and a C-terminal kinase domain (N-acetylmannosamine kinase, MNK). Mutations of the GNE protein led to hypoactivity of the enzyme and cause sialurea or autosomal recessive inclusion body myopathy/Nonaka myopathy. Here, we used all-atom molecular dynamics (MD) simulations to comprehend the folding, dynamics and conformational stability of MNK variants, including the wild type (WT) and three mutants (H677R, V696M and H677R/V696M). The deleterious and destabilizing nature of MNK mutants were predicted using different prediction tools. Results predicted that mutations modulate the stability, flexibility and function of MNK. The effect of mutations on the conformational stability and dynamics of MNK was next studied through the free-energy landscape (FEL), hydrogen-bonds and secondary structure changes. The FEL results show that the mutations interfere with various conformational transitions in both WT and mutants, exposing the structural underpinnings of protein destabilization and unfolding brought on by mutation. We discover that, when compared to the other two mutations, V696M and H677R/V696M, H677R has the most harmful effects. These findings have a strong correlation with published experimental studies that demonstrate how these mutations disrupt MNK activity. Hence, this computational study describes the structural details to unravel the mutant effects at the atomistic resolution and has implications for understanding the GNE's physiological and pathological role.Communicated by Ramaswamy H. Sarma.

16.
Bioorg Med Chem ; 21(19): 6077-83, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23953686

RESUMO

Novel 2-thioxothiazole derivatives (6-19) as potential adenosine A2A receptor (A2AR) antagonists were synthesized. The strong interaction of the compounds (6-19) with A2AR in docking study was confirmed by high binding affinity with human A2AR expressed in HEK293T cells using radioligand-binding assay. The compound 19 demonstrated very high selectivity for A2AR as compared to standard A2AR antagonist SCH58261. Decrease in A2AR-coupled release of endogenous cAMP in treated HEK293T cells demonstrated in vitro A2AR antagonist potential of the compound 19. Attenuation in haloperidol-induced impairment (catalepsy) in Swiss albino male mice pre-treated with compound 19 is evocative to explore its prospective in therapy of PD.


Assuntos
Antagonistas do Receptor A2 de Adenosina/síntese química , Desenho de Fármacos , Receptor A2A de Adenosina , Tiazóis/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Células HEK293 , Humanos , Masculino , Camundongos , Modelos Biológicos , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/farmacologia , Receptor A2A de Adenosina/química , Tiazóis/química , Tiazóis/farmacologia , Triazóis/química , Triazóis/farmacologia
17.
J Biomol Struct Dyn ; 41(19): 9797-9807, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36379684

RESUMO

The COVID-19 outbreak brought on by the SARS-CoV-2 virus continued to infect a sizable population worldwide. The SARS-CoV-2 nucleocapsid (N) protein is the most conserved RNA-binding structural protein and is a desirable target because of its involvement in viral transcription and replication. Based on this aspect, this study focused to repurpose antiviral compounds approved or in development for treating COVID-19. The inhibitors chosen are either FDA-approved or are currently being studied in clinical trials against COVID-19. Initially, they were designed to target stress granules and other RNA biology. We have utilized structure-based molecular docking and all-atom molecular dynamics (MD) simulation approach to investigate in detail the binding energy and binding modes of the different anti-N inhibitors to N protein. The result showed that five drugs including Silmitasterib, Ninetanidinb, Ternatin, Luteolin, Fedratinib, PJ34, and Zotatafin were found interacting with RNA binding sites as well as to predicted protein interface with higher binding energy. Overall, drug binding increases the stability of the complex with maximum stability found in the order, Silmitasertib > PJ34 > Zotatatafin. In addition, the frustration changes due to drug binding brings a decrease in local frustration and this decrease is mainly observed in α-helix, ß3, ß5, and ß6 strands and are important for drug binding. Our in-silico data suggest that an effective interaction occurs for some of the tested drugs and prompt their further validation to reduce the rapid outspreading of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , Nucleocapsídeo , Simulação de Dinâmica Molecular , RNA , Inibidores de Proteases , Antivirais/farmacologia
18.
J Biomol Struct Dyn ; 41(9): 3717-3727, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35343865

RESUMO

Thromboembolic diseases are a major cause of mortality in human and the currently available anticoagulants are associated with various drawbacks, therefore the search for anticoagulants that have better safety profile is highly desirable. Compounds that are part of the dietary routine can be modified to possibly increase their anticoagulant potential. We show mannose 2,3,4,5,6-O-pentasulfate (MPS) as a synthetically modified form of mannose that has appreciable anticoagulation properties. An in silico study identified that mannose in sulfated form can bind effectively to the heparin-binding site of antithrombin (ATIII) and heparin cofactor II (HCII). Mannose was sulfated using a simple sulfation strategy-involving triethylamine-sulfur trioxide adduct. HCII and ATIII were purified from human plasma and the binding analysis using fluorometer and isothermal calorimetry showed that MPS binds at a unique site. A thrombin inhibition analysis using the chromogenic substrate showed that MPS partially enhances the activity of HCII. Further an assessment of in vitro blood coagulation assays using human plasma showed that the activated partial thromboplastin time (APTT) and prothrombin time (PT) were prolonged in the presence of MPS. A molecular dynamics simulation analysis of the HCII-MPS complex showed fluctuations in a N-terminal loop and the cofactor binding site of HCII. The results indicate that MPS is a promising lead due to its effect on the in vitro coagulation rate.Communicated by Ramaswamy H. Sarma.


Assuntos
Cofator II da Heparina , Manose , Humanos , Cofator II da Heparina/química , Cofator II da Heparina/metabolismo , Manose/farmacologia , Coagulação Sanguínea , Anticoagulantes/farmacologia , Anticoagulantes/química , Heparina/farmacologia , Antitrombina III/farmacologia , Antitrombina III/fisiologia , Antitrombinas/farmacologia , Trombina/química
19.
J Biomol Struct Dyn ; : 1-13, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126188

RESUMO

Abnormal aggregation and amyloid inclusions of TAR DNA-binding protein 43 (TDP-43) and α-Synuclein (α-Syn) are frequently co-observed in amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. Several reports showed TDP-43 C-terminal domain (CTD) and α-Syn interact with each other and the aggregates of these two proteins colocalized together in different cellular and animal models. Molecular dynamics simulation was conducted to elucidate the stability of the TDP-43 and Syn complex structure. The interfacial mutations in protein complexes changes the stability and binding affinity of the protein that may cause diseases. Here, we have utilized the computational saturation mutagenesis approach including structure-based stability and binding energy calculations to compute the systemic effects of missense mutations of TDP-43 CTD and α-Syn on protein stability and binding affinity. Most of the interfacial mutations of CTD and α-Syn were found to destabilize the protein and reduced the protein binding affinity. The results thus shed light on the functional consequences of missense mutations observed in TDP-43 associated proteinopathies and may provide the mechanisms of co-morbidities involving these two proteins.Communicated by Ramaswamy H. Sarma.

20.
Amino Acids ; 43(4): 1451-64, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22278740

RESUMO

G-protein-coupled receptors (GPCRs) are cell surface receptors. The dynamic property of receptor-receptor interactions in GPCRs modulates the kinetics of G-protein signaling and stability. In the present work, the structural and dynamic study of A(2A)R-D(2)R interactions was carried to acquire the understanding of the A(2A)R-D(2)R receptor activation and deactivation process, facilitating the design of novel drugs and therapeutic target for Parkinson's disease. The structure-based features (Alpha, Beta, SurfAlpha, and SurfBeta; GapIndex, Leakiness and Gap Volume) and slow mode model (ENM) facilitated the prediction of kinetics (K (off), K (on), and K (d)) of A(2A)R-D(2)R interactions. The results demonstrated the correlation coefficient 0.294 for K (d) and K (on) and the correlation coefficient 0.635 for K (d) and K (off), and indicated stable interfacial contacts in the formation of heterodimer. The coulombic interaction involving the C-terminal tails of the A(2A)R and intracellular loops (ICLs) of D(2)R led to the formation of interfacial contacts between A(2A)R-D(2)R. The properties of structural dynamics, ENM and KFC server-based hot-spot analysis illustrated the stoichiometry of A(2A)R-D(2)R contact interfaces as dimer. The propensity of amino acid residues involved in A(2A)R-D(2)R interaction revealed the presence of positively (R, H and K) and negatively (E and D) charged structural motif of TMs and ICL3 of A(2A)R and D(2)R at interface of dimer contact. Essentially, in silico structural and dynamic study of A(2A)R-D(2)R interactions will provide the basic understanding of the A(2A)R-D(2)R interfacial contact surface for activation and deactivation processes, and could be used as constructive model to recognize the protein-protein interactions in receptor assimilations.


Assuntos
Simulação por Computador , Receptor A2A de Adenosina/química , Receptores de Dopamina D2/química , Animais , Células Eucarióticas/metabolismo , Humanos , Cinética , Camundongos , Modelos Moleculares , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Receptor Cross-Talk , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA