Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 633
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(12): e2313513121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483989

RESUMO

Cooperative interactions between amino acids are critical for protein function. A genetic reflection of cooperativity is epistasis, which is when a change in the amino acid at one position changes the sequence requirements at another position. To assess epistasis within an enzyme active site, we utilized CTX-M ß-lactamase as a model system. CTX-M hydrolyzes ß-lactam antibiotics to provide antibiotic resistance, allowing a simple functional selection for rapid sorting of modified enzymes. We created all pairwise mutations across 17 active site positions in the ß-lactamase enzyme and quantitated the function of variants against two ß-lactam antibiotics using next-generation sequencing. Context-dependent sequence requirements were determined by comparing the antibiotic resistance function of double mutations across the CTX-M active site to their predicted function based on the constituent single mutations, revealing both positive epistasis (synergistic interactions) and negative epistasis (antagonistic interactions) between amino acid substitutions. The resulting trends demonstrate that positive epistasis is present throughout the active site, that epistasis between residues is mediated through substrate interactions, and that residues more tolerant to substitutions serve as generic compensators which are responsible for many cases of positive epistasis. Additionally, we show that a key catalytic residue (Glu166) is amenable to compensatory mutations, and we characterize one such double mutant (E166Y/N170G) that acts by an altered catalytic mechanism. These findings shed light on the unique biochemical factors that drive epistasis within an enzyme active site and will inform enzyme engineering efforts by bridging the gap between amino acid sequence and catalytic function.


Assuntos
Escherichia coli , beta-Lactamases , Escherichia coli/genética , Domínio Catalítico/genética , Mutação , Substituição de Aminoácidos , beta-Lactamases/química
2.
Nature ; 581(7808): 329-332, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433610

RESUMO

Diacylglycerol O-acyltransferase 1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans1. DGAT1 belongs to the membrane-bound O-acyltransferase (MBOAT) superfamily, members of which are found in all kingdoms of life and are involved in the acylation of lipids and proteins2,3. How human DGAT1 and other mammalian members of the MBOAT family recognize their substrates and catalyse their reactions is unknown. The absence of three-dimensional structures also hampers rational targeting of DGAT1 for therapeutic purposes. Here we present the cryo-electron microscopy structure of human DGAT1 in complex with an oleoyl-CoA substrate. Each DGAT1 protomer has nine transmembrane helices, eight of which form a conserved structural fold that we name the MBOAT fold. The MBOAT fold in DGAT1 forms a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for each of the two substrates, fatty acyl-CoA and diacylglycerol. DGAT1 can exist as either a homodimer or a homotetramer and the two forms have similar enzymatic activity. The N terminus of DGAT1 interacts with the neighbouring protomer and these interactions are required for enzymatic activity.


Assuntos
Microscopia Crioeletrônica , Diacilglicerol O-Aciltransferase/química , Diacilglicerol O-Aciltransferase/metabolismo , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Sítios de Ligação , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/ultraestrutura , Diglicerídeos/metabolismo , Humanos , Modelos Moleculares , Multimerização Proteica , Relação Estrutura-Atividade , Triglicerídeos/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(24): e2219404120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276413

RESUMO

Nogo-66 receptor 1 (NgR1) binds a variety of structurally dissimilar ligands in the adult central nervous system to inhibit axon extension. Disruption of ligand binding to NgR1 and subsequent signaling can improve neuron outgrowth, making NgR1 an important therapeutic target for diverse neurological conditions such as spinal crush injuries and Alzheimer's disease. Human NgR1 serves as a receptor for mammalian orthoreovirus (reovirus), but the mechanism of virus-receptor engagement is unknown. To elucidate how NgR1 mediates cell binding and entry of reovirus, we defined the affinity of interaction between virus and receptor, determined the structure of the virus-receptor complex, and identified residues in the receptor required for virus binding and infection. These studies revealed that central NgR1 surfaces form a bridge between two copies of viral capsid protein σ3, establishing that σ3 serves as a receptor ligand for reovirus. This unusual binding interface produces high-avidity interactions between virus and receptor to prime early entry steps. These studies refine models of reovirus cell-attachment and highlight the evolution of viruses to engage multiple receptors using distinct capsid components.


Assuntos
Orthoreovirus , Reoviridae , Animais , Humanos , Receptor Nogo 1/metabolismo , Ligação Viral , Proteínas Virais/metabolismo , Ligantes , Reoviridae/metabolismo , Orthoreovirus/metabolismo , Receptores Virais/metabolismo , Mamíferos/metabolismo
4.
J Biol Chem ; 300(1): 105493, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000656

RESUMO

Klebsiella pneumoniae carbapenemase 2 (KPC-2) is an important source of drug resistance as it can hydrolyze and inactivate virtually all ß-lactam antibiotics. KPC-2 is potently inhibited by avibactam via formation of a reversible carbamyl linkage of the inhibitor with the catalytic serine of the enzyme. However, the use of avibactam in combination with ceftazidime (CAZ-AVI) has led to the emergence of CAZ-AVI-resistant variants of KPC-2 in clinical settings. One such variant, KPC-44, bears a 15 amino acid duplication in one of the active-site loops (270-loop). Here, we show that the KPC-44 variant exhibits higher catalytic efficiency in hydrolyzing ceftazidime, lower efficiency toward imipenem and meropenem, and a similar efficiency in hydrolyzing ampicillin, than the WT KPC-2 enzyme. In addition, the KPC-44 variant enzyme exhibits 12-fold lower AVI carbamylation efficiency than the KPC-2 enzyme. An X-ray crystal structure of KPC-44 showed that the 15 amino acid duplication results in an extended and partially disordered 270-loop and also changes the conformation of the adjacent 240-loop, which in turn has altered interactions with the active-site omega loop. Furthermore, a structure of KPC-44 with avibactam revealed that formation of the covalent complex results in further disorder in the 270-loop, suggesting that rearrangement of the 270-loop of KPC-44 facilitates AVI carbamylation. These results suggest that the duplication of 15 amino acids in the KPC-44 enzyme leads to resistance to CAZ-AVI by modulating the stability and conformation of the 270-, 240-, and omega-loops.


Assuntos
Ceftazidima , Farmacorresistência Bacteriana , Modelos Moleculares , Humanos , Aminoácidos/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/química , beta-Lactamases/genética , beta-Lactamases/metabolismo , Ceftazidima/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Farmacorresistência Bacteriana/genética , Cristalografia por Raios X , Domínio Catalítico/genética , Estrutura Terciária de Proteína
5.
Nature ; 568(7752): 368-372, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30996320

RESUMO

Complex topological configurations are fertile ground for exploring emergent phenomena and exotic phases in condensed-matter physics. For example, the recent discovery of polarization vortices and their associated complex-phase coexistence and response under applied electric fields in superlattices of (PbTiO3)n/(SrTiO3)n suggests the presence of a complex, multi-dimensional system capable of interesting physical responses, such as chirality, negative capacitance and large piezo-electric responses1-3. Here, by varying epitaxial constraints, we discover room-temperature polar-skyrmion bubbles in a lead titanate layer confined by strontium titanate layers, which are imaged by atomic-resolution scanning transmission electron microscopy. Phase-field modelling and second-principles calculations reveal that the polar-skyrmion bubbles have a skyrmion number of +1, and resonant soft-X-ray diffraction experiments show circular dichroism, confirming chirality. Such nanometre-scale polar-skyrmion bubbles are the electric analogues of magnetic skyrmions, and could contribute to the advancement of ferroelectrics towards functionalities incorporating emergent chirality and electrically controllable negative capacitance.

6.
J Biol Chem ; 299(5): 104630, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963495

RESUMO

CTX-M ß-lactamases are a widespread source of resistance to ß-lactam antibiotics in Gram-negative bacteria. These enzymes readily hydrolyze penicillins and cephalosporins, including oxyimino-cephalosporins such as cefotaxime. To investigate the preference of CTX-M enzymes for cephalosporins, we examined eleven active-site residues in the CTX-M-14 ß-lactamase model system by alanine mutagenesis to assess the contribution of the residues to catalysis and specificity for the hydrolysis of the penicillin, ampicillin, and the cephalosporins cephalothin and cefotaxime. Key active site residues for class A ß-lactamases, including Lys73, Ser130, Asn132, Lys234, Thr216, and Thr235, contribute significantly to substrate binding and catalysis of penicillin and cephalosporin substrates in that alanine substitutions decrease both kcat and kcat/KM. A second group of residues, including Asn104, Tyr105, Asn106, Thr215, and Thr216, contribute only to substrate binding, with the substitutions decreasing only kcat/KM. Importantly, calculating the average effect of a substitution across the 11 active-site residues shows that the most significant impact is on cefotaxime hydrolysis while ampicillin hydrolysis is least affected, suggesting the active site is highly optimized for cefotaxime catalysis. Furthermore, we determined X-ray crystal structures for the apo-enzymes of the mutants N106A, S130A, N132A, N170A, T215A, and T235A. Surprisingly, in the structures of some mutants, particularly N106A and T235A, the changes in structure propagate from the site of substitution to other regions of the active site, suggesting that the impact of substitutions is due to more widespread changes in structure and illustrating the interconnected nature of the active site.


Assuntos
Domínio Catalítico , Cefalosporinas , Resistência a Medicamentos , Escherichia coli , beta-Lactamases , Ampicilina/metabolismo , Ampicilina/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Catálise , Domínio Catalítico/genética , Cefotaxima/metabolismo , Cefotaxima/farmacologia , Cefalosporinas/metabolismo , Cefalosporinas/farmacologia , Resistência a Medicamentos/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Mutagênese , Penicilinas/metabolismo , Penicilinas/farmacologia , beta-Lactamas/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína
7.
Curr Microbiol ; 81(6): 140, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622481

RESUMO

Environmental problems are caused by the disposal of agrowastes in developing countries. It is imperative to convert such wastes into useful products, which require enzymes such as ß-glucosidase. ß-Glucosidase has variety of applications in biotechnology including food, textile, detergents, pulp and paper, pharmaceutical and biofuel industries. ß-Glucosidase production was performed using the locally isolated Aspergillus protuberus using best growth circumstances on rice husk in solid-state fermentation (SSF). Leaching of ß-glucosidase from fermented rice husk with number of solvents to evaluate their extraction efficacy. Among the different solvents examined, acetate buffer (0.02 M, pH 5.0) proved to be the best solvent. The subsequent parameters were optimized with acetate buffer. Two washes with acetate buffer each by shaking (30 min) in a ratio of 1 g of rice husk: 5 ml of acetate buffer together attained maximum recovery of ß-glucosidase with 41.95 U/g of rice husk.


Assuntos
Aspergillus , Oryza , beta-Glucosidase , Fermentação , Solventes , Acetatos
8.
Biotechnol Lett ; 46(2): 183-199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38252364

RESUMO

Microbial pretreatment of lignocellulosic biomass holds significant promise for environmentally friendly biofuel production, offering an alternative to fossil fuels. This study focused on the isolation and characterization of two novel delignifying bacteria, GIET1 and GIET2, to enhance cellulose accessibility by lignin degradation. Molecular characterization confirmed their genetic identities, providing valuable microbial resources for biofuel production. Our results revealed distinct preferences for temperature, pH, and incubation period for the two bacteria. Bacillus haynesii exhibited optimal performance under moderate conditions and shorter incubation period, making it suitable for rice straw and sugarcane bagasse pretreatment. In contrast, Paenibacillus alvei thrived at higher temperatures and slightly alkaline pH, requiring a longer incubation period ideal for corn stalk pretreatment. These strain-specific requirements highlight the importance of tailoring pretreatment conditions to specific feedstocks. Structural, chemical, and morphological analyses demonstrated that microbial pretreatment reduced the amorphous lignin, increasing cellulose crystallinity and accessibility. These findings underscore the potential of microbial pretreatment to enhance biofuel production by modifying the lignocellulosic biomass. Such environmentally friendly bioconversion processes offer sustainable and cleaner energy solutions. Further research to optimize these methods for scalability and broader application is necessary in the pursuit for more efficient and greener biofuel production.


Assuntos
Lignina , Saccharum , Lignina/química , Celulose/química , Biomassa , Biocombustíveis , Hidrólise
9.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836586

RESUMO

Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, cross-linking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate the molecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes.


Assuntos
Proteínas do Capsídeo/metabolismo , Chaperonina com TCP-1/metabolismo , Chaperonas Moleculares/metabolismo , Reoviridae/metabolismo , Proteínas do Capsídeo/química , Chaperonina com TCP-1/química , Microscopia Crioeletrônica , Espectrometria de Massas , Chaperonas Moleculares/química , Conformação Proteica , Dobramento de Proteína , Proteostase
10.
Pediatr Cardiol ; 45(4): 787-794, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360920

RESUMO

Surgical aortopulmonary shunting (SAPS) and ductal stenting (DS) are the main palliations in infants with cyanotic congenital heart diseases (CHD). We aimed to study the safety and efficacy of DS and to compare it with SAPS as a palliative procedure in infants with CHD and duct-dependent pulmonary circulation. Retrospective institutional clinical data review of consecutive infants aged < 3 months who underwent DS or SAPS over 5 years. The primary outcome was procedural success which was defined as event-free survival (mortality, need for re-intervention, procedural failure) at 30 days post-procedure. The secondary outcome was defined by a composite of death, major adverse cardiovascular events, or need for re-intervention at 6 months and on long-term follow-up. We included 102 infants (DS, n = 53 and SAPS, n = 49). The median age at DS and SAPS was 4 days (IQR 2.0-8.5) and 8 days (IQR 4.0-39.0), respectively. The median weight at intervention was 3.0 kg (IQR 3.0-3.0) and 3.0 kg (IQR 2.5-3.0) in the two respective arms. Tetralogy of Fallot with pulmonary atresia was the most common indication for DS and SAPS. The 30-day mortality was significantly higher in SAPS group as compared with DS group (p < 0.05). However, 30-day major adverse cardiac events (MACE) rates were similar in both groups (p = 0.29). DS was associated with shorter duration of mechanical ventilation, duration of stay in the intensive care and hospital stay than with SAPS. At 6 months, there was no significant difference in terms of mortality or event-free survival. Long-term MACE-free survival was also comparable (p = 0.13). DS is an effective and safer alternative to SAPS in infants with duct-dependent pulmonary circulation, offering reduced procedure-related mortality and morbidity than SAPS. Careful study of ductal anatomy is crucial to procedural success. However, long-term outcomes are similar in both procedures.


Assuntos
Procedimento de Blalock-Taussig , Cardiopatias Congênitas , Lactente , Humanos , Estudos Retrospectivos , Circulação Pulmonar , Resultado do Tratamento , Cuidados Paliativos/métodos , Procedimento de Blalock-Taussig/efeitos adversos , Stents , Artéria Pulmonar/cirurgia
11.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931791

RESUMO

The IoT has become an integral part of the technological ecosystem that we all depend on. The increase in the number of IoT devices has also brought with it security concerns. Lightweight cryptography (LWC) has evolved to be a promising solution to improve the privacy and confidentiality aspect of IoT devices. The challenge is to choose the right algorithm from a plethora of choices. This work aims to compare three different LWC algorithms: AES-128, SPECK, and ASCON. The comparison is made by measuring various criteria such as execution time, memory utilization, latency, throughput, and security robustness of the algorithms in IoT boards with constrained computational capabilities and power. These metrics are crucial to determine the suitability and help in making informed decisions on choosing the right cryptographic algorithms to strike a balance between security and performance. Through the evaluation it is observed that SPECK exhibits better performance in resource-constrained IoT devices.

12.
Indian J Crit Care Med ; 28(4): 349-354, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585325

RESUMO

Introduction: The usual methods of perfusion assessment in patients with shock, such as capillary refill time, skin mottling, and serial serum lactate measurements have many limitations. Veno-arterial difference in the partial pressure of carbon dioxide (PCO2 gap) is advocated being more reliable. We evaluated serial change in PCO2 gap during resuscitation in circulatory shock and its effect on ICU outcomes. Materials and methods: This prospective observational study included 110 adults with circulatory shock. Patients were resuscitated as per current standards of care. We recorded invasive arterial pressure, urine output, cardiac index (CI), PCO2 gap at ICU admission at 6, 12, and 24 hours, and various patient outcomes. Results: Significant decrease in PCO2 gap was observed at 6 h and was accompanied by improvement in serum lactate, mean arterial pressure, CI and urine output in (n = 61). We compared these patients with those in whom this decrease did not occur (n = 49). Mortality and ICU LOS was significantly lower in patients with low PCO2 gap, while more patients with high PCO2 gap required RRT. Conclusion: We found that a persistently high PCO2 gap at 6 and 12 h following resuscitation in patients with shock of various etiologies, was associated with increased mortality, need for RRT and increased ICU LOS. High PCO2 gap had a moderate discriminative ability to predict mortality. How to cite this article: Zirpe KG, Tiwari AM, Kulkarni AP, Vaidya HS, Gurav SK, Deshmukh AM, et al. The Evolution of Central Venous-to-arterial Carbon Dioxide Difference (PCO2 Gap) during Resuscitation Affects ICU Outcomes: A Prospective Observational Study. Indian J Crit Care Med 2024;28(4):349-354.

13.
Prev Med ; 174: 107619, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451552

RESUMO

Diabetes seems to be a severe protracted disease or combination of biochemical disorders. A person's blood glucose (BG) levels remain elevated for an extended period because tissues lack and non-reaction to hormones. Such conditions are also causing longer-term obstacles or serious health issues. The medical field handles a large amount of very delicate data that must be handled properly. K-Nearest Neighbourhood (KNN) seems to be a common and straightforward ML method for creating illness threat prognosis models based on pertinent clinical information. We provide an adaptable neuro-fuzzy inference K-Nearest Neighbourhood (AF-KNN) learning-dependent forecasting system relying on patients' behavioural traits in several aspects to obtain our aim. That method identifies the best proportion of neighborhoods having a reduced inaccuracy risk to improve the predicting performance of the final system.


Assuntos
Algoritmos , Diabetes Mellitus , Humanos , Diabetes Mellitus/diagnóstico , Previsões , Análise Multivariada
14.
Luminescence ; 38(3): 232-249, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36626333

RESUMO

Latent fingerprints (LFPs) are one among the most important types of evidences at crime scenes because of the distinctiveness and tenacity of the friction ridges in fingerprints (FPs). Therefore, it is essential in forensic science to develop a reliable method to detect LFPs. Traditional detection methods still face a number of difficulties, such as limited sensitivity, low contrast, strong background, and complex processing stages. In this study, MgO-ZrO2 :Tb3+ (1-5 mol%) (MZ:Tb) nanocomposites (NCs) were prepared via a simple solution combustion (SC) method at low temperature. The photoluminescence (PL) investigation demonstrates that when excited at 379 nm, the produced NCs emits distinctive emission peaks of terbium ions (Tb3+ ). According to the photometric results, the NCs can be employed as warm light NCs and emit light in the green portion of the colour spectrum. The estimated optical band gap from diffuse reflectance spectra is found to be in the range 4.84-4.97 eV. Regardless of the type of surface being used, the optimized MgO-ZrO2 :Tb3+ (4 mol%) (MZ:4Tb) NCs has a strong ability to minimize background fluorescence interference. With high contrast LFP and I-V type of cheiloscopy, these NCs present a flexible fluorescent mark for the identification of levels 1-3 details in forensic investigation.


Assuntos
Óxido de Magnésio , Nanocompostos , Dermatoglifia , Térbio , Segurança Computacional
15.
J Biol Chem ; 296: 100799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34022225

RESUMO

The Klebsiella pneumoniae carbapenemase-2 (KPC-2) is a common source of antibiotic resistance in Gram-negative bacterial infections. KPC-2 is a class A ß-lactamase that exhibits a broad substrate profile and hydrolyzes most ß-lactam antibiotics including carbapenems owing to rapid deacylation of the covalent acyl-enzyme intermediate. However, the features that allow KPC-2 to deacylate substrates more rapidly than non-carbapenemase enzymes are not clear. The active-site residues in KPC-2 are largely conserved in sequence and structure compared with non-carbapenemases, suggesting that subtle alterations may collectively facilitate hydrolysis of carbapenems. We utilized a nonbiased genetic approach to identify mutants deficient in carbapenem hydrolysis but competent for ampicillin hydrolysis. Subsequent pre-steady-state enzyme kinetics analyses showed that the substitutions slow the rate of deacylation of carbapenems. Structure determination via X-ray diffraction indicated that a F72Y mutant forms a hydrogen bond between the tyrosine hydroxyl group and Glu166, which may lower basicity and impair the activation of the catalytic water for deacylation, whereas several mutants impact the structure of the Q214-R220 active site loop. A T215P substitution lowers the deacylation rate and drastically alters the conformation of the loop, thereby disrupting interactions between the enzyme and the carbapenem acyl-enzyme intermediate. Thus, the environment of the Glu166 general base and the precise placement and conformational stability of the Q214-R220 loop are critical for efficient deacylation of carbapenems by the KPC-2 enzyme. Therefore, the design of carbapenem antibiotics that interact with Glu166 or alter the Q214-R220 loop conformation may disrupt enzyme function and overcome resistance.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Carbapenêmicos/metabolismo , Klebsiella pneumoniae/metabolismo , beta-Lactamases/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Hidrólise , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/química , Modelos Moleculares , Conformação Proteica , beta-Lactamases/química
16.
Nat Mater ; 20(2): 194-201, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33046856

RESUMO

Topological solitons such as magnetic skyrmions have drawn attention as stable quasi-particle-like objects. The recent discovery of polar vortices and skyrmions in ferroelectric oxide superlattices has opened up new vistas to explore topology, emergent phenomena and approaches for manipulating such features with electric fields. Using macroscopic dielectric measurements, coupled with direct scanning convergent beam electron diffraction imaging on the atomic scale, theoretical phase-field simulations and second-principles calculations, we demonstrate that polar skyrmions in (PbTiO3)n/(SrTiO3)n superlattices are distinguished by a sheath of negative permittivity at the periphery of each skyrmion. This enhances the effective dielectric permittivity compared with the individual SrTiO3 and PbTiO3 layers. Moreover, the response of these topologically protected structures to electric field and temperature shows a reversible phase transition from the skyrmion state to a trivial uniform ferroelectric state, accompanied by large tunability of the dielectric permittivity. Pulsed switching measurements show a time-dependent evolution and recovery of the skyrmion state (and macroscopic dielectric response). The interrelationship between topological and dielectric properties presents an opportunity to simultaneously manipulate both by a single, and easily controlled, stimulus, the applied electric field.

17.
J Assoc Physicians India ; 70(7): 11-12, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35833392

RESUMO

BACKGROUND: Vitamin D plays an important role in bone and modulates mineral metabolism and immune function with probable link to several chronic and infectious conditions. In vivo studies have revealed that vitamin D deficiency reduces insulin secretion capacity of the islet beta cells in pancreas. Several studies have shown a correlation between vitamin D levels and insulin resistance, nonetheless, extensive studies showing the relationship between the two are lacking especially among southern Indian population. So the present study was aimed at evaluating the relationship between vitamin D and insulin resistance by using homeostatic model assessment-insulin resistance (HOMA-IR). MATERIALS AND METHODS: In a cross-sectional study, 184 people among which 92 were diabetic and 92 were nondiabetic were recruited at RL Jalappa Hospital, Kolar in the Department of Medicine between May 2018 and April 2019. Fasting serum insulin (I0), fasting plasma glucose (G0), hemoglobin A1c (HbA1C), renal function test, liver function test (LFT), lipid profile, and vitamin D levels were estimated. IBM SPSS version 22 was used for statistical analysis. RESULTS: The prevalence of vitamin D deficiency in our study was (72) 78.2% among diabetic cases and (59) 64.1% among the nondiabetic controls, with the diabetic cases showing lower levels of vitamin D than the controls, however, it was not statistically significant. There was no significant difference in homeostatic model assessment-beta-cell function (HOMA-B) and HOMA-IR between vitamin D deficient and nondeficient groups among cases and controls. CONCLUSION: Vitamin D deficiency is prevalent in both type II diabetes mellitus (T2DM) as well as nondiabetic. Furthermore, there is no association between vitamin D deficiency and insulin resistance or beta-cell function.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Deficiência de Vitamina D , Glicemia/análise , Estudos Transversais , Humanos , Insulina , Resistência à Insulina/fisiologia , Vitamina D , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/epidemiologia , Vitaminas
18.
J Biol Chem ; 295(52): 18239-18255, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33109613

RESUMO

Lys234 is one of the residues present in class A ß-lactamases that is under selective pressure due to antibiotic use. Located adjacent to proton shuttle residue Ser130, it is suggested to play a role in proton transfer during catalysis of the antibiotics. The mechanism underpinning how substitutions in this position modulate inhibitor efficiency and substrate specificity leading to drug resistance is unclear. The K234R substitution identified in several inhibitor-resistant ß-lactamase variants is associated with decreased potency of the inhibitor clavulanic acid, which is used in combination with amoxicillin to overcome ß-lactamase-mediated antibiotic resistance. Here we show that for CTX-M-14 ß-lactamase, whereas Lys234 is required for hydrolysis of cephalosporins such as cefotaxime, either lysine or arginine is sufficient for hydrolysis of ampicillin. Further, by determining the acylation and deacylation rates for cefotaxime hydrolysis, we show that both rates are fast, and neither is rate-limiting. The K234R substitution causes a 1500-fold decrease in the cefotaxime acylation rate but a 5-fold increase in kcat for ampicillin, suggesting that the K234R enzyme is a good penicillinase but a poor cephalosporinase due to slow acylation. Structural results suggest that the slow acylation by the K234R enzyme is due to a conformational change in Ser130, and this change also leads to decreased inhibition potency of clavulanic acid. Because other inhibitor resistance mutations also act through changes at Ser130 and such changes drastically reduce cephalosporin but not penicillin hydrolysis, we suggest that clavulanic acid paired with an oxyimino-cephalosporin rather than penicillin would impede the evolution of resistance.


Assuntos
Antibacterianos/farmacologia , Mutação , Prótons , Resistência beta-Lactâmica/genética , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Domínio Catalítico , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Mutagênese Sítio-Dirigida , Conformação Proteica , Especificidade por Substrato , beta-Lactamases/genética
19.
J Biol Chem ; 295(21): 7376-7390, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32299911

RESUMO

CTX-M ß-lactamases are widespread in Gram-negative bacterial pathogens and provide resistance to the cephalosporin cefotaxime but not to the related antibiotic ceftazidime. Nevertheless, variants have emerged that confer resistance to ceftazidime. Two natural mutations, causing P167S and D240G substitutions in the CTX-M enzyme, result in 10-fold increased hydrolysis of ceftazidime. Although the combination of these mutations would be predicted to increase ceftazidime hydrolysis further, the P167S/D240G combination has not been observed in a naturally occurring CTX-M variant. Here, using recombinantly expressed enzymes, minimum inhibitory concentration measurements, steady-state enzyme kinetics, and X-ray crystallography, we show that the P167S/D240G double mutant enzyme exhibits decreased ceftazidime hydrolysis, lower thermostability, and decreased protein expression levels compared with each of the single mutants, indicating negative epistasis. X-ray structures of mutant enzymes with covalently trapped ceftazidime suggested that a change of an active-site Ω-loop to an open conformation accommodates ceftazidime leading to enhanced catalysis. 10-µs molecular dynamics simulations further correlated Ω-loop opening with catalytic activity. We observed that the WT and P167S/D240G variant with acylated ceftazidime both favor a closed conformation not conducive for catalysis. In contrast, the single substitutions dramatically increased the probability of open conformations. We conclude that the antagonism is due to restricting the conformation of the Ω-loop. These results reveal the importance of conformational heterogeneity of active-site loops in controlling catalytic activity and directing evolutionary trajectories.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Evolução Molecular , Mutação de Sentido Incorreto , Resistência beta-Lactâmica , beta-Lactamases/química , Substituição de Aminoácidos , Catálise , Ceftazidima/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo
20.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33055250

RESUMO

Norovirus (NoV) infections are a leading cause of gastroenteritis. The humoral immune response plays an important role in the control of NoV, and recent studies have identified neutralizing antibodies that bind the capsid protein VP1 to block viral infection. Here, we utilize a NoV GI.1 Jun-Fos-assisted phage display library constructed from randomly fragmented genomic DNA coupled with affinity selection for antibody binding and subsequent deep sequencing to map epitopes. The epitopes were identified by quantitating the phage clones before and after affinity selection and aligning the sequences of the most enriched peptides. The HJT-R3-A9 single-chain variable fragment (scFv) antibody epitope was mapped to a 12-amino-acid region of VP1 that is also the binding site for several previously identified monoclonal antibodies. We synthesized the 12-mer peptide and found that it binds the scFv antibody with a KD (equilibrium dissociation constant) of 46 nM. Further, alignment of enriched peptides after affinity selection on rabbit anti-NoV polyclonal antisera revealed five families of overlapping sequences that define distinct epitopes in VP1. One of these is identical to the HJT-R3-A9 scFv epitope, further suggesting that it is immunodominant. Similarly, other epitopes identified using the polyclonal antisera overlap binding sites for previously reported monoclonal antibodies, suggesting that they are also dominant epitopes. The results demonstrate that affinity selection and deep sequencing of the phage library provide sufficient resolution to map multiple epitopes simultaneously from complex samples such as polyclonal antisera. This approach can be extended to examine the antigenic landscape in patient sera to facilitate investigation of the immune response to NoV.IMPORTANCE NoV infections are a leading cause of gastroenteritis in the United States. Human NoVs exhibit extensive genetic and antigenic diversity, which makes it challenging to design a vaccine that provides broad protection against infection. Antibodies developed during the immune response play an important role in the control of NoV infections. Neutralizing antibodies that act by sterically blocking the site on the virus used to bind human cells have been identified. Identification of other antibody binding sites associated with virus neutralization is therefore of interest. Here, we use a high-resolution method to map multiple antibody binding sites simultaneously from complex serum samples. The results show that a relatively small number of sites on the virus bind a large number of independently generated antibodies, suggesting that immunodominance plays a role in the humoral immune response to NoV infections.


Assuntos
Antígenos Virais/genética , Antígenos Virais/imunologia , Norovirus/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Bacteriófagos/genética , Sítios de Ligação de Anticorpos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Técnicas de Visualização da Superfície Celular , Mapeamento de Epitopos , Epitopos , Genoma Viral/genética , Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Norovirus/genética , Coelhos , Anticorpos de Cadeia Única/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA