Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(8): 102226, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35787369

RESUMO

Increased MAPK signaling is a hallmark of various cancers and is a central regulator of cell survival. Direct ERK1/2 inhibition is considered a promising approach to avoid ERK1/2 reactivation caused by upstream kinases BRAF, MEK1/2, and KRAS, as well as by receptor tyrosine kinase inhibitors, but the dynamics and selectivity of ERK1/2 inhibitors are much less studied compared with BRAF or MEK inhibitors. Using ERK1/2 and downstream kinase ELK1 reporter cell lines of lung cancer (H1299; NRASQ61K), colon cancer (HCT-116; KRASG13D), neuroblastoma (SH-SY5Y), and leukemia (U937), we examined the relationship between ERK inhibition and drug-induced toxicity for five ERK inhibitors: SCH772984, ravoxertinib, LY3214996, ulixertinib, and VX-11e, as well as one MEK inhibitor, PD0325901. Comparing cell viability and ERK inhibition revealed different ERK dependencies for these cell lines. We identify several drugs, such as SCH772984 and VX-11e, which induce excessive toxicity not directly related to ERK1/2 inhibition in specific cell lines. We also show that PD0325901, LY3214996, and ulixertinib are prone to ERK1/2 reactivation over time. We distinguished two types of ERK1/2 reactivation: the first could be reversed by adding a fresh dose of inhibitors, while the second persists even after additional treatments. We also showed that cells that became resistant to the MEK1/2 inhibitor PD0325901 due to ERK1/2 reactivation remained sensitive to ERK1/2 inhibitor ulixertinib. Our data indicate that correlation of ERK inhibition with drug-induced toxicity in multiple cell lines may help to find more selective and effective ERK1/2 inhibitors.


Assuntos
Antineoplásicos , Quinases de Proteína Quinase Ativadas por Mitógeno , Neuroblastoma , Inibidores de Proteínas Quinases , Aminopiridinas , Antineoplásicos/farmacologia , Benzamidas , Linhagem Celular Tumoral , Sobrevivência Celular , Difenilamina/análogos & derivados , Humanos , Indazóis , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neuroblastoma/tratamento farmacológico , Piperazinas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Pirazóis , Piridonas , Pirimidinas , Pirróis
2.
Biochemistry (Mosc) ; 88(11): 1786-1799, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38105199

RESUMO

In response to stress stimuli, eukaryotic cells typically suppress protein synthesis. This leads to the release of mRNAs from polysomes, their condensation with RNA-binding proteins, and the formation of non-membrane-bound cytoplasmic compartments called stress granules (SGs). SGs contain 40S but generally lack 60S ribosomal subunits. It is known that cycloheximide, emetine, and anisomycin, the ribosome inhibitors that block the progression of 80S ribosomes along mRNA and stabilize polysomes, prevent SG assembly. Conversely, puromycin, which induces premature termination, releases mRNA from polysomes and stimulates the formation of SGs. The same effect is caused by some translation initiation inhibitors, which lead to polysome disassembly and the accumulation of mRNAs in the form of stalled 48S preinitiation complexes. Based on these and other data, it is believed that the trigger for SG formation is the presence of mRNA with extended ribosome-free segments, which tend to form condensates in the cell. In this study, we evaluated the ability of various small-molecule translation inhibitors to block or stimulate the assembly of SGs under conditions of severe oxidative stress induced by sodium arsenite. Contrary to expectations, we found that ribosome-targeting elongation inhibitors of a specific type, which arrest solitary 80S ribosomes at the beginning of the mRNA coding regions but do not interfere with all subsequent ribosomes in completing translation and leaving the transcripts (such as harringtonine, lactimidomycin, or T-2 toxin), completely prevent the formation of arsenite-induced SGs. These observations suggest that the presence of even a single 80S ribosome on mRNA is sufficient to prevent its recruitment into SGs, and the presence of extended ribosome-free regions of mRNA is not sufficient for SG formation. We propose that mRNA entry into SGs may be mediated by specific contacts between RNA-binding proteins and those regions on 40S subunits that remain inaccessible when ribosomes are associated.


Assuntos
Biossíntese de Proteínas , Grânulos de Estresse , RNA Mensageiro/metabolismo , Grânulos Citoplasmáticos , Ribossomos/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Proteínas de Ligação a RNA/metabolismo
3.
Mar Drugs ; 21(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623705

RESUMO

Fascaplysin is a marine alkaloid which is considered to be a lead drug candidate due to its diverse and potent biological activity. As an anticancer agent, fascaplysin holds a great potential due to the multiple targets affected by this alkaloid in cancer cells, including inhibition of cyclin-dependent kinase 4 (CDK4) and induction of intrinsic apoptosis. At the same time, the studies on structural optimization are hampered by its rather high toxicity, mainly caused by DNA intercalation. In addition, the number of methods for the syntheses of its derivatives is limited. In the current study, we report a new two-step method of synthesis of fascaplysin derivatives based on low temperature UV quaternization for the synthesis of thermolabile 9-benzyloxyfascaplysin and 6-tert-butylfascaplysin. 9-Benzyloxyfascaplysin was used as the starting compound to obtain 9-hydroxyfascaplysin. However, the latter was found to be chemically highly unstable. 6-tert-Butylfascaplysin revealed a significant decrease in DNA intercalation when compared to fascaplysin, while cytotoxicity was only slightly reduced. Therefore, the impact of DNA intercalation for the cytotoxic effects of fascaplysin and its derivatives needs to be questioned.


Assuntos
Alcaloides , Antineoplásicos , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Carbolinas , DNA
4.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958484

RESUMO

The long-read RNA sequencing developed by Oxford Nanopore Technology provides a direct quantification of transcript isoforms. That makes the number of transcript isoforms per gene an intrinsically suitable metric for alternative splicing (AS) profiling in the application to this particular type of RNA sequencing. By using this simple metric and recruiting principal component analysis (PCA) as a tool to visualize the high-dimensional transcriptomic data, we were able to group biospecimens of normal human liver tissue and hepatocyte-derived malignant HepG2 and Huh7 cells into clear clusters in a 2D space. For the transcriptome-wide analysis, the clustering was observed regardless whether all genes were included in analysis or only those expressed in all biospecimens tested. However, in the application to a particular set of genes known as pharmacogenes, which are involved in drug metabolism, the clustering worsened dramatically in the latter case. Based on PCA data, the subsets of genes most contributing to biospecimens' grouping into clusters were selected and subjected to gene ontology analysis that allowed us to determine the top 20 biological processes among which translation and processes related to its regulation dominate. The suggested metrics can be a useful addition to the existing metrics for describing AS profiles, especially in application to transcriptome studies with long-read sequencing.


Assuntos
Processamento Alternativo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Componente Principal , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma , Análise de Sequência de RNA/métodos , Fígado , Isoformas de Proteínas/genética , Hepatócitos , Linhagem Celular
5.
Mar Drugs ; 20(3)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35323484

RESUMO

Marine alkaloid fascaplysin and its derivatives are known to exhibit promising anticancer properties in vitro and in vivo. However, toxicity of these molecules to non-cancer cells was identified as a main limitation for their clinical use. Here, for the very first time, we synthesized a library of fascaplysin derivatives covering all possible substituent introduction sites, i.e., cycles A, C and E of the 12H-pyrido[1-2-a:3,4-b']diindole system. Their selectivity towards human prostate cancer versus non-cancer cells, as well as the effects on cellular metabolism, membrane integrity, cell cycle progression, apoptosis induction and their ability to intercalate into DNA were investigated. A pronounced selectivity for cancer cells was observed for the family of di- and trisubstituted halogen derivatives (modification of cycles A and E), while a modification of cycle C resulted in a stronger activity in therapy-resistant PC-3 cells. Among others, 3,10-dibromofascaplysin exhibited the highest selectivity, presumably due to the cytostatic effects executed via the targeting of cellular metabolism. Moreover, an introduction of radical substituents at C-9, C-10 or C-10 plus C-3 resulted in a notable reduction in DNA intercalating activity and improved selectivity. Taken together, our research contributes to understanding the structure-activity relationships of fascaplysin alkaloids and defines further directions of the structural optimization.


Assuntos
Antineoplásicos , Indóis , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , DNA/metabolismo , Humanos , Indóis/química , Indóis/farmacologia , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Relação Estrutura-Atividade
6.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361596

RESUMO

Methionine dependence of malignant cells is one of the cancer hallmarks. It is well described that methionine deprivation drives cancer cells death, both in vitro and in vivo. Methionine gamma-lyase (MGL) isolated from different species or obtained by genetic engineering can be used for effective methionine depletion. In this work, we show that MGL S3, a genetically engineered protein comprised of MGL from Clostridium sporogenesis fused to epidermal growth factor (EGF)-like peptide, reduces, in vitro, the number of cancer cells of four different origins-neuroblastoma, lung, breast, and colon cancer. We reveal that MGL S3 is more toxic for neuroblastoma SH-SY5Y and lung cancer H1299 cells compared to MGL tetani, and causes cell death by the induction of apoptosis. In addition, the observed death of cells treated with MGL S3 is accompanied by the prominent downregulation of ERK activity. By the analysis of transcriptomic data of more than 1500 cancer cell lines and patient samples, we show that the high expression of four genes from the methionine metabolism pathway (AHCY, CBS, DNMT3A, and MTAP) is associated with poor prognosis for breast cancer and neuroblastoma patients. Additionally, cells of these origins are characterized by a high correlation between EGFR dependency and DNMT3A/CBS expression. Finally, we demonstrate the ability of MGL S3 to enhance the sensitivity of H1299 cells to EGFR inhibition with gefitinib.


Assuntos
Antineoplásicos , Neuroblastoma , Humanos , Regulação para Baixo , Metionina/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
7.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887076

RESUMO

Neuroblastoma (NB) is a pediatric cancer with high clinical and molecular heterogeneity, and patients with high-risk tumors have limited treatment options. Receptor tyrosine kinase KIT has been identified as a potential marker of high-risk NB and a promising target for NB treatment. We investigated 19,145 tumor RNA expression and molecular pathway activation profiles for 20 cancer types and detected relatively high levels of KIT expression in NB. Increased KIT expression was associated with activation of cell survival pathways, downregulated apoptosis induction, and cell cycle checkpoint control pathways. KIT knockdown with shRNA encoded by lentiviral vectors in SH-SY5Y cells led to reduced cell proliferation and apoptosis induction up to 50%. Our data suggest that apoptosis induction was caused by mitotic catastrophe, and there was a 2-fold decrease in percentage of G2-M cell cycle phase after KIT knockdown. We found that KIT knockdown in NB cells leads to strong upregulation of other pro-survival growth factor signaling cascades such as EPO, NGF, IL-6, and IGF-1 pathways. NGF, IGF-1 and EPO were able to increase cell proliferation in KIT-depleted cells in an ERK1/2-dependent manner. Overall, we show that KIT is a promising therapeutic target in NB, although such therapy efficiency could be impeded by growth factor signaling activation.


Assuntos
Neuroblastoma , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Regulação Neoplásica da Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Neural/metabolismo , Neuroblastoma/metabolismo , Transdução de Sinais
8.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563017

RESUMO

Chromosomal rearrangements leading to the relocation of proto-oncogenes into transcription-active regions are found in various types of tumors. In particular, the transfer of proto-oncogenes to the locus of heavy chains of immunoglobulins (IGH) is frequently observed in B-lymphomas. The increased expression of the MYC proto-oncogene due to IGH/MYC translocation is detected in approximately 85% of Burkitt lymphoma cases. The regulatory mechanisms affecting the oncogenes upon translocation include non-coding enhancer RNAs (eRNAs). We conducted a search for the eRNAs that may affect MYC transcription in the case of IGH/MYC translocation in Burkitt lymphoma, looking for potentially oncogenic eRNAs located at the IGH locus and predominantly expressed in B cells. Overexpression and knockdown of our primary candidate eRNA AL928768.3 led to the corresponding changes in the expression of MYC proto-oncogene in Burkitt lymphoma cells. Furthermore, we demonstrated that AL928768.3 knockdown decreased lymphoma cell proliferation and resistance to chemotherapy. Significant effects were observed only in cell lines bearing IGH/MYC abnormality but not in B-cell lines without this translocation nor primary B-cells. Our results indicate that AL928768.3 plays an important role in the development of Burkitt's lymphoma and suggest it and similar, yet undiscovered eRNAs as potential tissue-specific targets for cancer treatment.


Assuntos
Linfoma de Burkitt , Linfoma , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Linfoma de Burkitt/patologia , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Linfoma/genética , RNA , Translocação Genética
9.
Mar Drugs ; 19(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34564151

RESUMO

Myeloid leukemia is a hematologic neoplasia characterized by a clonal proliferation of hematopoietic stem cell progenitors. Patient prognosis varies depending on the subtype of leukemia as well as eligibility for intensive treatment regimens and allogeneic stem cell transplantation. Although significant progress has been made in the therapy of patients including novel targeted treatment approaches, there is still an urgent need to optimize treatment outcome. The most common therapy is based on the use of chemotherapeutics cytarabine and anthrayclines. Here, we studied the effect of the recently synthesized marine alkaloid 3,10-dibromofascaplysin (DBF) in myeloid leukemia cells. Unsubstituted fascaplysin was early found to affect cell cycle via inhibiting CDK4/6, thus we compared the activity of DBF and other brominated derivatives with known CDK4/6 inhibitor palbociclib, which was earlier shown to be a promising candidate to treat leukemia. Unexpectedly, the effect DBF on cell cycle differs from palbociclib. In fact, DBF induced leukemic cells apoptosis and decreased the expression of genes responsible for cancer cell survival. Simultaneously, DBF was found to activate the E2F1 transcription factor. Using bioinformatical approaches we evaluated the possible molecular mechanisms, which may be associated with DBF-induced activation of E2F1. Finally, we found that DBF synergistically increase the cytotoxic effect of cytarabine in different myeloid leukemia cell lines. In conclusion, DBF is a promising drug candidate, which may be used in combinational therapeutics approaches to reduce leukemia cell growth.


Assuntos
Antineoplásicos/farmacologia , Citarabina/farmacologia , Leucemia Mieloide/tratamento farmacológico , Oxindóis/farmacologia , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mieloide/genética
10.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884718

RESUMO

New insights into the structure of the hybrid κ/ß-carrageenan (κ/ß-CRG) of the red alga Tichocarpus crinitus have been obtained. Carrageenan oligosaccharides were prepared through the chemical and enzymatic depolymerization of κ/ß-CRG with κ-carrageenase and its the enzyme-resistant fraction. The composition and distribution of the repetition units of κ/ß- CRG were investigated by using the negative ion tandem MALDI-TOFMS and ESIMS method, which made it possible to prove and characterize the hybrid structure of this polysaccharide. An analysis revealed the blockwise distribution of the long ß-blocks along the polysaccharide chain, with the inclusion of κ/ß, µ/ν-blocks and some ι-blocks. Furthermore, the desulfated κ/ß-CRG was shown to contain of -G-D- repeating units up to 3.5 kDa. Previous studies have demonstrated that CRGs suppress the replication of several viruses. Here, we established that κ/ß-CRG and its oligosaccharides significantly inhibit the transduction efficiency of replication-defective lentiviral particles pseudotyped with the envelope proteins of three different viruses. We found that the polysaccharide and its oligosaccharides strongly reduced the transduction efficiency of lentiviral particles pseudotyped with GP160-the envelope protein of the human immunodeficiency virus HIV-1-when added to T-lymphocyte Jurkat cells. The CRG oligosaccharides displayed significantly higher antiviral activity.


Assuntos
Antivirais/farmacologia , Carragenina/química , Carragenina/farmacologia , Proteína gp160 do Envelope de HIV/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Lentivirus/genética , Antivirais/química , Infecções por HIV/virologia , Humanos , Células Jurkat , Lentivirus/metabolismo
11.
Nucleic Acids Res ; 46(17): 8966-8977, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30102362

RESUMO

Several studies have described functional peptides encoded in RNA that are considered to be noncoding. Telomerase RNA together with telomerase reverse transcriptase and regulatory proteins make up the telomerase complex, the major component of the telomere length-maintaining machinery. In contrast to protein subunits, telomerase RNA is expressed constitutively in most somatic cells where telomerase reverse transcriptase is absent. We show here that the transcript of human telomerase RNA codes a 121 amino acid protein (hTERP). The existence of hTERP was shown by immunoblotting, immunofluorescence microscopy and mass spectroscopy. Gain-of-function and loss-of-function experiments showed that hTERP protects cells from drug-induced apoptosis and participates in the processing of autophagosome. We suggest that hTERP regulates crosstalk between autophagy and apoptosis and is involved in cellular adaptation under stress conditions.


Assuntos
Adaptação Fisiológica/genética , Apoptose/genética , Autofagia/genética , RNA Mensageiro/genética , RNA/genética , Telomerase/genética , Telômero/metabolismo , Sequência de Aminoácidos , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Gatos , Linhagem Celular Tumoral , Clonagem Molecular , Doxorrubicina/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Cavalos , Humanos , Células Jurkat , Camundongos , RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Estresse Fisiológico , Telomerase/metabolismo , Telômero/química , Homeostase do Telômero
12.
Mar Drugs ; 18(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271756

RESUMO

Efficacy and mechanism of action of marine alkaloid 3,10-dibromofascaplysin (DBF) were investigated in human prostate cancer (PCa) cells harboring different levels of drug resistance. Anticancer activity was observed across all cell lines examined without signs of cross-resistance to androgen receptor targeting agents (ARTA) or taxane based chemotherapy. Kinome analysis followed by functional investigation identified JNK1/2 to be one of the molecular targets of DBF in 22Rv1 cells. In contrast, no activation of p38 and ERK1/2 MAPKs was observed. Inhibition of the drug-induced JNK1/2 activation or of the basal p38 activity resulted in increased cytotoxicity of DBF, whereas an active ERK1/2 was identified to be important for anticancer activity of the alkaloid. Synergistic effects of DBF were observed in combination with PARP-inhibitor olaparib most likely due to the induction of ROS production by the marine alkaloid. In addition, DBF intensified effects of platinum-based drugs cisplatin and carboplatin, and taxane derivatives docetaxel and cabazitaxel. Finally, DBF inhibited AR-signaling and resensitized AR-V7-positive 22Rv1 prostate cancer cells to enzalutamide, presumably due to AR-V7 down-regulation. These findings propose DBF to be a promising novel drug candidate for the treatment of human PCa regardless of resistance to standard therapy.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Oxindóis/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células PC-3 , Fosforilação , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais
13.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171937

RESUMO

Overcoming drug resistance of cancer cells is the major challenge in molecular oncology. Here, we demonstrate that long non-coding RNA LINC00973 is up-regulated in normal and cancer cells of different origins upon treatment with different chemotherapeutics. Bioinformatics analysis shows that this is a consequence of DNA damage response pathway activation or mitotic arrest. Knockdown of LINC0973 decreases p21 levels, activates cellular proliferation of cancer cells, and suppresses apoptosis of drug-treated cells. We have found that LINC00973 strongly increases p21 protein content, possibly by blocking its degradation. Besides, we have found that ectopic over-expression of LINC00973 inhibits formation of the pro-survival p53-Ser15-P isoform, which preserves chromosome integrity. These results might open a new approach to the development of more efficient anti-cancer drugs.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , RNA Longo não Codificante/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células HCT116 , Humanos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
14.
Proc Natl Acad Sci U S A ; 111(23): 8595-600, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912157

RESUMO

The compound immunodeficiencies in nonobese diabetic (NOD) inbred mice homozygous for the Prkdc(scid) and Il2rg(null) alleles (NSG mice) permit engraftment of a wide-range of primary human cells, enabling sophisticated modeling of human disease. In studies designed to define neoplastic stem cells of primary myelofibrosis (PMF), a myeloproliferative neoplasm characterized by profound disruption of the hematopoietic microenvironment, we observed a high frequency of acute myeloid leukemia (AML) in NSG mice. AML was of mouse origin, confined to PMF-xenografted mice, and contained multiple clonal integrations of ecotropic murine leukemia virus (E-MuLV). Significantly, MuLV replication was not only observed in diseased mice, but also in nontreated NSG controls. Furthermore, in addition to the single ecotropic endogenous retrovirus (eERV) located on chromosome 11 (Emv30) in the NOD genome, multiple de novo germ-line eERV integrations were observed in mice from each of four independent NSG mouse colonies. Analysis confirmed that E-MuLV originated from the Emv30 provirus and that recombination events were not necessary for virus replication or AML induction. Pathogenicity is thus likely attributable to PMF-mediated paracrine stimulation of mouse myeloid cells, which serve as targets for retroviral infection and transformation, as evidenced by integration into the Evi1 locus, a hotspot for retroviral-induced myeloid leukemia. This study thus corroborates a role of paracrine stimulation in PMF disease progression, underlines the importance of target cell type and numbers in MuLV-induced disease, and mandates awareness of replicating MuLV in NOD immunodeficient mice, which can significantly influence experimental results and their interpretation.


Assuntos
Retrovirus Endógenos/genética , Leucemia Experimental/genética , Leucemia Mieloide Aguda/genética , Mielofibrose Primária/genética , Idoso , Animais , Southern Blotting , Feminino , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Vírus da Leucemia Murina/genética , Leucemia Experimental/patologia , Leucemia Experimental/virologia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mielofibrose Primária/patologia , Mielofibrose Primária/virologia , Provírus/genética , Transplante Heterólogo , Integração Viral/genética , Replicação Viral/genética , Adulto Jovem
15.
Int J Mol Sci ; 18(11)2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29113144

RESUMO

The hepatitis C virus (HCV) causes chronic liver disease leading to fibrosis, cirrhosis, and hepatocellular carcinoma. HCV infection triggers various types of cell death which contribute to hepatitis C pathogenesis. However, much is still unknown about the impact of viral proteins on them. Here we present the results of simultaneous immunocytochemical analysis of markers of apoptosis, autophagy, and necrosis in Huh7.5 cells expressing individual HCV proteins or their combinations, or harboring the virus replicon. Stable replication of the full-length HCV genome or transient expression of its core, Е1/Е2, NS3 and NS5B led to the death of 20-47% cells, 72 h posttransfection, whereas the expression of the NS4A/B, NS5A or NS3-NS5B polyprotein did not affect cell viability. HCV proteins caused different impacts on the activation of caspases-3, -8 and -9 and on DNA fragmentation. The structural core and E1/E2 proteins promoted apoptosis, whereas non-structural NS4A/B, NS5A, NS5B suppressed apoptosis by blocking various members of the caspase cascade. The majority of HCV proteins also enhanced autophagy, while NS5A also induced necrosis. As a result, the death of Huh7.5 cells expressing the HCV core was induced via apoptosis, the cells expressing NS3 and NS5B via autophagy-associated death, and the cells expressing E1/E2 glycoproteins or harboring HCV the replicon via both apoptosis and autophagy.


Assuntos
Carcinoma Hepatocelular/genética , Hepacivirus/genética , Neoplasias Hepáticas/genética , Proteínas não Estruturais Virais/genética , Apoptose/genética , Autofagia/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Caspases/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Genoma Viral/genética , Hepacivirus/patogenicidade , Hepatite C/genética , Hepatite C/virologia , Humanos , Cirrose Hepática/genética , Cirrose Hepática/virologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Transdução de Sinais , Transfecção , Replicação Viral/genética
16.
Bioorg Med Chem Lett ; 25(11): 2382-5, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25937017

RESUMO

Recently we reported benzohydroxamic acids (BHAs) as potent and selective inhibitors of hepatitis C virus (HCV) replicon propagation. In this work 12 pyridine hydroxamic acids (PHAs) were synthesized and tested in full-genome replicon assay. It was found that PHAs possessed very similar anti-HCV properties compared to BHAs. Both classes of hydroxamic acids caused hyperacetylation of α-tubulin pointing to inhibition of histone deacetylase 6 (HDAC6) as part of their antiviral activity. The tested compounds did not inhibit the growth of poliovirus, displaying high selectivity against HCV.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Piridinas/química , Antivirais/química , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Desacetilase 6 de Histona , Histona Desacetilases/genética , Humanos , Ácidos Hidroxâmicos/química , Estrutura Molecular , Poliovirus/efeitos dos fármacos , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos , Vírus
17.
Cell Death Discov ; 10(1): 181, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637526

RESUMO

Imaging-based anticancer drug screens are becoming more prevalent due to development of automated fluorescent microscopes and imaging stations, as well as rapid advancements in image processing software. Automated cell imaging provides many benefits such as their ability to provide high-content data, modularity, dynamics recording and the fact that imaging is the most direct way to access cell viability and cell proliferation. However, currently most publicly available large-scale anticancer drugs screens, such as GDSC, CTRP and NCI-60, provide cell viability data measured by assays based on colorimetric or luminometric measurements of NADH or ATP levels. Although such datasets provide valuable data, it is unclear how well drug toxicity measurements can be integrated with imaging data. Here we explored the relations between drug toxicity data obtained by XTT assay, two quantitative nuclei imaging methods and trypan blue dye exclusion assay using a set of four cancer cell lines with different morphologies and 30 drugs with different mechanisms of action. We show that imaging-based approaches provide high accuracy and the differences between results obtained by different methods highly depend on drug mechanism of action. Selecting AUC metrics over IC50 or comparing data where significantly drugs reduced cell numbers noticeably improves consistency between methods. Using automated cell segmentation protocols we analyzed mitochondria activity in more than 11 thousand drug-treated cells and showed that XTT assay produces unreliable data for CDK4/6, Aurora A, VEGFR and PARP inhibitors due induced cell size growth and increase in individual mitochondria activity. We also explored several benefits of image-based analysis such as ability to monitor cell number dynamics, dissect changes in total and individual mitochondria activity from cell proliferation, and ability to identify chromatin remodeling drugs. Finally, we provide a web tool that allows comparing results obtained by different methods.

18.
Front Mol Biosci ; 11: 1351641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774235

RESUMO

Introduction: Proteasomes are multi-subunit protein complexes responsible for protein degradation in cells. Immunoproteasomes and intermediate proteasomes (together non-constitutive proteasomes) are specific forms of proteasomes frequently associated with immune response, antigen presentation, inflammation and stress. Expression of non-constitutive proteasome subunits has a prognostic value in several types of cancer. Thus, factors that modulate non-constitutive proteasome expression in tumors are of particular interest. Multikinase inhibitors (MKIs) demonstrate promising results in treatment of cancer. At the same time, their immunomodulatory properties and effects on non-constitutive proteasome expression in colorectal cancer cells are poorly investigated. Methods: Proteasome subunit expression in colorectal cancer was evaluated by bioinformatic analysis of available datasets. Two colorectal cancer cell lines, expressing fluorescent non-constitutive proteasomes were treated with multikinase inhibitors: regorafenib and sorafenib. The proteasome subunit expression was assessed by real-time PCR, Western blotting and flow cytometry. The proteasome activity was studied using proteasome activity-based probe and fluorescent substrates. Intracellular proteasome localization was revealed by confocal microscopy. Reactive oxygen species levels following treatment were determined in cells. Combined effect of proteasome inhibition and treatment with MKIs on viability of cells was estimated. Results: Expression of non-constitutive proteasomes is increased in BRAF-mutant colorectal tumors. Regorafenib and sorafenib stimulated the activity and synthesis of non-constitutive proteasomes in examined cell lines. MKIs induced oxidative stress and redistribution of proteasomes within cells. Sorafenib stimulated formation of cytoplasmic aggregates, containing proteolyticaly active non-constitutive proteasomes, while regorafenib had no such effect. MKIs caused no synergistic action when were combined with the proteasome inhibitor. Discussion: Obtained results indicate that MKIs might affect the crosstalk between cancer cells and immune cells via modulation of intracellular proteasome pool. Observed phenomenon should be considered when MKI-based therapy is applied.

19.
Sci Rep ; 14(1): 11788, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783016

RESUMO

Fascaplysin is a red cytotoxic pigment with anticancer properties isolated from the marine sponge Fascaplysinopsis sp. Recently, structure-activity relationship analysis reported by our group suggested that selective cytotoxicity of fascaplysin derivatives towards tumor cells negatively correlates with their ability to intercalate into DNA. To validate this hypothesis, we synthesized 6- and 7-tert-butylfascaplysins which reveal mitigated DNA-intercalating properties. These derivatives were found to be strongly cytotoxic to drug-resistant human prostate cancer cells, albeit did not demonstrate improved selectivity towards cancer cells when compared to fascaplysin. At the same time, kinome analysis suggested an activation of CHK1/ATR axis in cancer cells shortly after the drug exposure. Further experiments revealed induction of replication stress that is eventually converted to the toxic DNA double-strand breaks, resulting in caspase-independent apoptosis-like cell death. Our observations highlight new DNA-targeting effect of some fascaplysin derivatives and indicate more complex structure-activity relationships within the fascaplysin family, suggesting that cytotoxicity and selectivity of these alkaloids are influenced by multiple factors. Furthermore, combination with clinically-approved inhibitors of ATR/CHK1 as well as testing in tumors particularly sensitive to the DNA damage should be considered in further studies.


Assuntos
Antineoplásicos , Quinase 1 do Ponto de Checagem , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Indóis/farmacologia , Indóis/química , Apoptose/efeitos dos fármacos , Relação Estrutura-Atividade , Masculino , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , DNA/metabolismo , Animais , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Compostos de Amônio Quaternário , Carbolinas , Indolizinas
20.
AIDS Res Ther ; 10(1): 1, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23286882

RESUMO

BACKGROUND: Despite progress in the development of combined antiretroviral therapies (cART), HIV infection remains a significant challenge for human health. Current problems of cART include multi-drug-resistant virus variants, long-term toxicity and enormous treatment costs. Therefore, the identification of novel effective drugs is urgently needed. METHODS: We developed a straightforward screening approach for simultaneously evaluating the sensitivity of multiple HIV gag-pol mutants to antiviral drugs in one assay. Our technique is based on multi-colour lentiviral self-inactivating (SIN) LeGO vector technology. RESULTS: We demonstrated the successful use of this approach for screening compounds against up to four HIV gag-pol variants (wild-type and three mutants) simultaneously. Importantly, the technique was adapted to Biosafety Level 1 conditions by utilising ecotropic pseudotypes. This allowed upscaling to a large-scale screening protocol exploited by pharmaceutical companies in a successful proof-of-concept experiment. CONCLUSIONS: The technology developed here facilitates fast screening for anti-HIV activity of individual agents from large compound libraries. Although drugs targeting gag-pol variants were used here, our approach permits screening compounds that target several different, key cellular and viral functions of the HIV life-cycle. The modular principle of the method also allows the easy exchange of various mutations in HIV sequences. In conclusion, the methodology presented here provides a valuable new approach for the identification of novel anti-HIV drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA