RESUMO
N6-methyladenosine (m6A) is an abundant mRNA modification in the brain that has important roles in neurodevelopment and brain function. However, because of technical limitations, global profiling of m6A sites within the individual cell types that make up the brain has not been possible. Here, we develop a mouse model that enables transcriptome-wide m6A detection in any tissue of interest at single-cell resolution. We use these mice to map m6A across different brain regions and within single cells of the mouse cortex and discover a high degree of shared methylation across brain regions and cell types. However, we also identify a small number of differentially methylated mRNAs in neurons that encode important regulators of neuronal signaling, and we discover that microglia have lower levels of m6A than other cell types. Finally, we perform single-cell m6A mapping in aged mice and identify many transcripts with age-dependent changes in m6A.
RESUMO
SARS-CoV-2 causes the severe respiratory disease COVID-19. Remdesivir (RDV) was the first fast-tracked FDA approved treatment drug for COVID-19. RDV acts as an antiviral ribonucleoside (adenosine) analogue that becomes active once it accumulates intracellularly. It then diffuses into the host cell and terminates viral RNA transcription. Previous studies have shown that certain nucleoside analogues unintentionally inhibit mitochondrial RNA or DNA polymerases or cause mutational changes to mitochondrial DNA (mtDNA). These past findings on the mitochondrial toxicity of ribonucleoside analogues motivated us to investigate what effects RDV may have on mitochondrial function. Using in vitro and in vivo rodent models treated with RDV, we observed increases in mtDNA copy number in Mv1Lu cells (35.26% increase ± 11.33%) and liver (100.27% increase ± 32.73%) upon treatment. However, these increases only resulted in mild changes to mitochondrial function. Surprisingly, skeletal muscle and heart were extremely resistant to RDV treatment, tissues that have preferentially been affected by other nucleoside analogues. Although our data suggest that RDV does not greatly impact mitochondrial function, these data are insightful for the treatment of RDV for individuals with mitochondrial disease.