Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(3): 1014-1018, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30574636

RESUMO

The quasi-one-dimensional molecule-based Heisenberg antiferromagnet Cu(NO3)2(pyz)3 has an intrachain coupling J = 13.7(1) K () and exhibits a state of long-range magnetic order below TN = 0.105(1) K. The ratio of interchain to intrachain coupling is estimated to be |J'/J| = 3.3 × 10-3, demonstrating a high degree of isolation for the Cu chains.

2.
J Am Chem Soc ; 140(1): 122-125, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29215884

RESUMO

The quantum spin liquid (QSL) state is of great interest in relation to quantum computation and superconductivity and the search for new QSL materials is a current challenge in chemistry. Existing inorganic and molecular QSL compounds have two-dimensional structures, with spins arranged on triangular and kagome lattices, whereas three-dimensional structures with QSL characteristics are rare. In the copper-oxalate framework compound [(C2H5)3NH]2Cu2(C2O4)3, Cu(II) is coordinated with three bisbidentate oxalate bridges to form a three-dimensional (10,3) lattice and this produces a strong antiferromagnetic interaction between Cu2+ (S = 1/2) atoms (θ = -180 K). No long-range ordering (LRO) was observed in either magnetic susceptibility or specific heat measurements down to 2 K. Absence of LRO was further confirmed by µSR measurements down to 60 mK, indicating that it is a gapless QSL with f > 3000. Due to Jahn-Teller distortion and partial dimerization, the effective dimensionality of the magnetic lattice is reduced. This compound nevertheless highlights the great potential for obtaining QSLs of varying dimensionality from metal-organic frameworks.

3.
Phys Rev Lett ; 118(26): 267202, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28707923

RESUMO

We study by means of bulk and local probes the d-metal alloy Ni_{1-x}V_{x} close to the quantum critical concentration, x_{c}≈11.6%, where the ferromagnetic transition temperature vanishes. The magnetization-field curve in the ferromagnetic phase takes an anomalous power-law form with a nonuniversal exponent that is strongly x dependent and mirrors the behavior in the paramagnetic phase. Muon spin rotation experiments demonstrate inhomogeneous magnetic order and indicate the presence of dynamic fluctuating magnetic clusters. These results provide strong evidence for a quantum Griffiths phase on the ferromagnetic side of the quantum phase transition.

4.
J Am Chem Soc ; 138(7): 2280-91, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26811927

RESUMO

The accurate electron density distribution and magnetic properties of two metal-organic polymeric magnets, the quasi-one-dimensional (1D) Cu(pyz)(NO3)2 and the quasi-two-dimensional (2D) [Cu(pyz)2(NO3)]NO3·H2O, have been investigated by high-resolution single-crystal X-ray diffraction and density functional theory calculations on the whole periodic systems and on selected fragments. Topological analyses, based on quantum theory of atoms in molecules, enabled the characterization of possible magnetic exchange pathways and the establishment of relationships between the electron (charge and spin) densities and the exchange-coupling constants. In both compounds, the experimentally observed antiferromagnetic coupling can be quantitatively explained by the Cu-Cu superexchange pathway mediated by the pyrazine bridging ligands, via a σ-type interaction. From topological analyses of experimental charge-density data, we show for the first time that the pyrazine tilt angle does not play a role in determining the strength of the magnetic interaction. Taken in combination with molecular orbital analysis and spin density calculations, we find a synergistic relationship between spin delocalization and spin polarization mechanisms and that both determine the bulk magnetic behavior of these Cu(II)-pyz coordination polymers.

5.
Chemistry ; 22(5): 1779-88, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26748964

RESUMO

The spin dynamics of Cr8 Mn, a nine-membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8 Mn is a rare example of a large odd-membered AF ring, and has an odd-number of 3d-electrons present. Odd-membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated-spin ground states. The chemical synthesis and structures of two Cr8 Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (µSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that µSR is sensitive to the ground-spin-state crossing from S=1/2 to S=3/2 in Cr8 Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin-pair correlations and scalar-spin chirality, shows a non-collinear spin structure that fluctuates between non-planar states of opposite chiralities.

6.
Inorg Chem ; 55(7): 3515-29, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27002487

RESUMO

The crystal structures of NiX2(pyz)2 (X = Cl (1), Br (2), I (3), and NCS (4)) were determined by synchrotron X-ray powder diffraction. All four compounds consist of two-dimensional (2D) square arrays self-assembled from octahedral NiN4X2 units that are bridged by pyz ligands. The 2D layered motifs displayed by 1-4 are relevant to bifluoride-bridged [Ni(HF2)(pyz)2]EF6 (E = P, Sb), which also possess the same 2D layers. In contrast, terminal X ligands occupy axial positions in 1-4 and cause a staggered packing of adjacent layers. Long-range antiferromagnetic (AFM) order occurs below 1.5 (Cl), 1.9 (Br and NCS), and 2.5 K (I) as determined by heat capacity and muon-spin relaxation. The single-ion anisotropy and g factor of 2, 3, and 4 were measured by electron-spin resonance with no evidence for zero-field splitting (ZFS) being observed. The magnetism of 1-4 spans the spectrum from quasi-two-dimensional (2D) to three-dimensional (3D) antiferromagnetism. Nearly identical results and thermodynamic features were obtained for 2 and 4 as shown by pulsed-field magnetization, magnetic susceptibility, as well as their Néel temperatures. Magnetization curves for 2 and 4 calculated by quantum Monte Carlo simulation also show excellent agreement with the pulsed-field data. Compound 3 is characterized as a 3D AFM with the interlayer interaction (J⊥) being slightly stronger than the intralayer interaction along Ni-pyz-Ni segments (J(pyz)) within the two-dimensional [Ni(pyz)2](2+) square planes. Regardless of X, J(pyz) is similar for the four compounds and is roughly 1 K.

7.
Proc Natl Acad Sci U S A ; 109(23): 8943-7, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22615355

RESUMO

Melanins are pigmentary macromolecules found throughout the biosphere that, in the 1970s, were discovered to conduct electricity and display bistable switching. Since then, it has been widely believed that melanins are naturally occurring amorphous organic semiconductors. Here, we report electrical conductivity, muon spin relaxation, and electron paramagnetic resonance measurements of melanin as the environmental humidity is varied. We show that hydration of melanin shifts the comproportionation equilibrium so as to dope electrons and protons into the system. This equilibrium defines the relative proportions of hydroxyquinone, semiquinone, and quinone species in the macromolecule. As such, the mechanism explains why melanin at neutral pH only conducts when "wet" and suggests that both carriers play a role in the conductivity. Understanding that melanin is an electronic-ionic hybrid conductor rather than an amorphous organic semiconductor opens exciting possibilities for bioelectronic applications such as ion-to-electron transduction given its biocompatibility.


Assuntos
Condutividade Elétrica , Transporte de Íons/fisiologia , Melaninas/fisiologia , Semicondutores , Benzoquinonas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Hidroxiquinolinas/metabolismo , Melaninas/metabolismo , Mésons , Água/metabolismo
8.
Phys Rev Lett ; 108(7): 077208, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22401252

RESUMO

Gaining control of the building blocks of magnetic materials and thereby achieving particular characteristics will make possible the design and growth of bespoke magnetic devices. While progress in the synthesis of molecular materials, and especially coordination polymers, represents a significant step towards this goal, the ability to tune the magnetic interactions within a particular framework remains in its infancy. Here we demonstrate a chemical method which achieves dimensionality selection via preferential inhibition of the magnetic exchange in an S=1/2 antiferromagnet along one crystal direction, switching the system from being quasi-two- to quasi-one-dimensional while effectively maintaining the nearest-neighbor coupling strength.

9.
Inorg Chem ; 51(4): 2121-9, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22296451

RESUMO

The structural and magnetic properties of the newly crystallized CuX(2)(pyzO)(H(2)O)(2) (X = Cl, Br; pyzO = pyrazine-N,N'-dioxide) coordination polymers are reported. These isostructural compounds crystallize in the monoclinic space group C2/c with, at 150 K, a = 17.0515(7) Å, b = 5.5560(2) Å, c = 10.4254(5) Å, ß = 115.400(2)°, and V = 892.21(7) Å(3) for X = Cl and a = 17.3457(8) Å, b = 5.6766(3) Å, c = 10.6979(5) Å, ß = 115.593(2)°, and V = 950.01(8) Å(3) for X = Br. Their crystal structure is characterized by one-dimensional chains of Cu(2+) ions linked through bidentate pyzO ligands. These chains are joined together through OH···O hydrogen bonds between the water ligands and pyzO oxygen atoms and Cu-X···X-Cu contacts. Bulk magnetic susceptibility measurements at ambient pressure show a broad maximum at 7 (Cl) and 28 K (Br) that is indicative of short-range magnetic correlations. The dominant spin exchange is the Cu-X···X-Cu supersuperexchange because the magnetic orbital of the Cu(2+) ion is contained in the CuX(2)(H(2)O)(2) plane and the X···X contact distances are short. The magnetic data were fitted to a Heisenberg 1D uniform antiferromagnetic chain model with J(1D)/k(B) = -11.1(1) (Cl) and -45.9(1) K (Br). Magnetization saturates at fields of 16.1(3) (Cl) and 66.7(5) T (Br), from which J(1D) is determined to be -11.5(2) (Cl) and -46.4(5) K (Br). For the Br analog the pressure dependence of the magnetic susceptibility indicates a gradual increase in the magnitude of J(1D)/k(B) up to -51.2 K at 0.84 GPa, suggesting a shortening of the Br···Br contact distance under pressure. At higher pressure X-ray powder diffraction data indicates a structural phase transition at ∼3.5 GPa. Muon-spin relaxation measurements indicate that CuCl(2)(pyzO)(H(2)O)(2) is magnetically ordered with T(N) = 1.06(1) K, while the signature for long-range magnetic order in CuBr(2)(pyzO)(H(2)O)(2) was much less definitive down to 0.26 K. The results for the CuX(2)(pyzO)(H(2)O)(2) complexes are compared to the related CuX(2)(pyrazine) materials.

10.
Inorg Chem ; 51(14): 7520-8, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22746404

RESUMO

[Ni(HF(2))(3-Clpy)(4)]BF(4) (py = pyridine) is a simple one-dimensional (1D) coordination polymer composed of compressed NiN(4)F(2) octahedra that form chains with bridging HF(2)(-) ligands. In spite of significant distortion of the HF(2)(-) bridge, a quasi-1D antiferromagnetic (AFM) behavior was observed with J(FHF) = 4.86 K.

11.
J Phys Chem C Nanomater Interfaces ; 126(17): 7529-7534, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35558820

RESUMO

Although muons are primarily regarded as a local spin probe, they can also access the charge state of an atom or molecule via quadrupolar level crossing resonance (QLCR) spectroscopy. We use Li+TCNQ- (TCNQ = 7,7,8,8-tetracyanoquinodimethane), a simple charge transfer salt, to test the potential of this technique in molecular systems by studying the interaction of a positive muon with the TCNQ nitrogen atoms. We show that both a positive muon and muonium are able to add to the nitrogen, leading to a singlet spin state for the addition molecule. This produces a characteristic three line QLCR spectrum, with the observed line positions and intensities determined by the principal values and orientation of the electric field gradient tensor at the nitrogen. Ab initio calculation of this field gradient and the resulting QLCR spectrum give good agreement with the experiment. A nonresonant background contribution to the relaxation rate also provides evidence for spin excitations rapidly diffusing along the TCNQ chains. These reflect mobile unpaired electrons introduced by muonium addition. It is thus shown that a single set of muon measurements can be sensitive to both spin and charge degrees of freedom in the same molecular material.

12.
Inorg Chem ; 50(13): 5990-6009, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21598910

RESUMO

[Ni(HF(2))(pyz)(2)]X {pyz = pyrazine; X = PF(6)(-) (1), SbF(6)(-) (2)} were structurally characterized by synchrotron X-ray powder diffraction and found to possess axially compressed NiN(4)F(2) octahedra. At 298 K, 1 is monoclinic (C2/c) with unit cell parameters, a = 9.9481(3), b = 9.9421(3), c = 12.5953(4) Å, and ß = 81.610(3)° while 2 is tetragonal (P4/nmm) with a = b = 9.9359(3) and c = 6.4471(2) Å and is isomorphic with the Cu-analogue. Infinite one-dimensional (1D) Ni-FHF-Ni chains propagate along the c-axis which are linked via µ-pyz bridges in the ab-plane to afford three-dimensional polymeric frameworks with PF(6)(-) and SbF(6)(-) counterions occupying the interior sites. A major difference between 1 and 2 is that the Ni-F-H bonds are bent (∼157°) in 1 but are linear in 2. Ligand field calculations (LFT) based on an angular overlap model (AOM), with comparison to the electronic absorption spectra, indicate greater π-donation of the HF(2)(-) ligand in 1 owing to the bent Ni-F-H bonds. Magnetic susceptibility data for 1 and 2 exhibit broad maxima at 7.4 and 15 K, respectively, and λ-like peaks in dχT/dT at 6.2 and 12.2 K that are ascribed to transitions to long-range antiferromagnetic order (T(N)). Muon-spin relaxation and specific heat studies confirm these T(N)'s. A comparative analysis of χ vs T to various 1D Heisenberg/Ising models suggests moderate antiferromagnetic interactions, with the primary interaction strength determined to be 3.05/3.42 K (1) and 5.65/6.37 K (2). However, high critical fields of 19 and 37.4 T obtained from low temperature pulsed-field magnetization data indicate that a single exchange constant (J(1D)) alone is insufficient to explain the data and that residual terms in the spin Hamiltonian, which could include interchain magnetic couplings (J(⊥)), as mediated by Ni-pyz-Ni, and single-ion anisotropy (D), must be considered. While it is difficult to draw absolute conclusions regarding the magnitude (and sign) of J(⊥) and D based solely on powder data, further support offered by related Ni(II)-pyz compounds and our LFT and density-functional theory (DFT) results lead us to a consistent quasi-1D magnetic description for 1 and 2.


Assuntos
Elétrons , Magnetismo , Compostos Organometálicos/química , Teoria Quântica , Ácido Fluorídrico/química , Estrutura Molecular , Níquel/química , Compostos Organometálicos/síntese química , Pirazinas/química
13.
J Am Chem Soc ; 132(30): 10467-76, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20662524

RESUMO

The response of the superconducting state and crystal structure of LiFeAs to chemical substitutions on both the Li and the Fe sites has been probed using high-resolution X-ray and neutron diffraction measurements, magnetometry, and muon-spin rotation spectroscopy. The superconductivity is extremely sensitive to composition: Li-deficient materials (Li(1-y)Fe(1+y)As with Fe substituting for Li) show a very rapid suppression of the superconducting state, which is destroyed when y exceeds 0.02, echoing the behavior of the Fe(1+y)Se system. Substitution of Fe by small amounts of Co or Ni results in monotonic lowering of the superconducting transition temperature, T(c), and the superfluid stiffness, rho(s), as the electron count increases. T(c) is lowered monotonically at a rate of 10 K per 0.1 electrons added per formula unit irrespective of whether the dopant is Co and Ni, and at higher doping levels superconductivity is completely suppressed. These results and the demonstration that the superfluid stiffness in these LiFeAs-derived compounds is higher than in all of the iron pnictide materials underlines the unique position that LiFeAs occupies in this class.

14.
Phys Rev Lett ; 104(5): 057007, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20366791

RESUMO

Using a combination of neutron, muon, and synchrotron techniques we show how the magnetic state in NaFeAs can be tuned into superconductivity by replacing Fe by either Co or Ni. The electron count is the dominant factor, since Ni doping has double the effect of Co doping for the same doping level. We follow the structural, magnetic, and superconducting properties as a function of doping to show how the superconducting state evolves, concluding that the addition of 0.1 electrons per Fe atom is sufficient to traverse the superconducting domain, and that magnetic order coexists with superconductivity at doping levels less than 0.025 electrons per Fe atom.

15.
J Am Chem Soc ; 131(13): 4590-1, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19334770

RESUMO

X-ray powder diffraction and magnetic susceptibility measurements show that Ag(pyz)(2)(S(2)O(8)) consists of 2D square nets of Ag(2+) ions resulting from the corner-sharing of axially elongated AgN(4)O(2) octahedra and exhibits characteristic 2D antiferromagnetism. Nevertheless, mu(+)SR measurements indicate that Ag(pyz)(2)(S(2)O(8)) undergoes 3D magnetic ordering below 7.8(3) K.

16.
J Am Chem Soc ; 131(19): 6733-47, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19290599

RESUMO

Three Cu(2+)-containing coordination polymers were synthesized and characterized by experimental (X-ray diffraction, magnetic susceptibility, pulsed-field magnetization, heat capacity, and muon-spin relaxation) and electronic structure studies (quantum Monte Carlo simulations and density functional theory calculations). [Cu(HF(2))(pyz)(2)]SbF(6) (pyz = pyrazine) (1a), [Cu(2)F(HF)(HF(2))(pyz)(4)](SbF(6))(2) (1b), and [CuAg(H(3)F(4))(pyz)(5)](SbF(6))(2) (2) crystallize in either tetragonal or orthorhombic space groups; their structures consist of 2D square layers of [M(pyz)(2)](n+) that are linked in the third dimension by either HF(2)(-) (1a and 1b) or H(3)F(4)(-) (2). The resulting 3D frameworks contain charge-balancing SbF(6)(-) anions in every void. Compound 1b is a defective polymorph of 1a, with the difference being that 50% of the HF(2)(-) links are broken in the former, which leads to a cooperative Jahn-Teller distortion and d(x(2))(-y(2)) orbital ordering. Magnetic data for 1a and 1b reveal broad maxima in chi at 12.5 and 2.6 K and long-range magnetic order below 4.3 and 1.7 K, respectively, while 2 displays negligible spin interactions owing to long and disrupted superexchange pathways. The isothermal magnetization, M(B), for 1a and 1b measured at 0.5 K reveals contrasting behaviors: 1a exhibits a concave shape as B increases to a saturation field, B(c), of 37.6 T, whereas 1b presents an unusual two-step saturation in which M(B) is convex until it reaches a step near 10.8 T and then becomes concave until saturation is reached at 15.8 T. The step occurs at two-thirds of M(sat), suggesting the presence of a ferrimagnetic structure. Compound 2 shows unusual hysteresis in M(B) at low temperature, although chi vs T does not reveal the presence of a magnetic phase transition. Quantum Monte Carlo simulations based on an anisotropic cubic lattice were applied to the magnetic data of 1a to afford g = 2.14, J = -13.4 K (Cu-pyz-Cu), and J(perpendicular) = -0.20 K (Cu-F...H...F-Cu), while chi vs T for 1b could be well reproduced by a spin-1/2 Heisenberg uniform chain model for g = 2.127(1), J(1) = -3.81(1), and zJ(2) = -0.48(1) K, where J(1) and J(2) are the intra- and interchain exchange couplings, respectively, which considers the number of magnetic nearest-neighbors (z). The M(B) data for 1b could not be satisfactorily explained by the chain model, suggesting a more complex magnetic structure in the ordered state and the need for additional terms in the spin Hamiltonian. The observed variation in magnetic behaviors is driven by differences in the H...F hydrogen-bonding motifs.

17.
J Am Chem Soc ; 131(39): 14000-17, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19746905

RESUMO

The slight incommensurate modulation of the structure of Bi(2)Mn(4/3)Ni(2/3)O(6) is sufficient to suppress the electrical polarization which arises in commensurate treatments of the structure, due to antiferroelectric coupling of local polar units of over 900 A(3). The incommensurate structure is produced by the competition between ferroelectric Bi lone pair-driven A site displacement, chemical order of Mn and Ni on the B site, and both charge and orbital order at these transition metals. The interplay between the frustrated polar Bi displacements and the frustrated spin order at the B site, induced by positional disorder, produces magnetodielectric coupling between the incommensurately modulated lattice and the spin-glass-like ground state with an unusual relationship between the magnetocapacitance and the applied field.

18.
Inorg Chem ; 48(5): 2140-6, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19235973

RESUMO

Oxalato-bridged divalent homometallic compounds A(2)[M(II)(2)(C(2)O(4))(3)] (M(II) = Fe(2+) (1), Co(2+) (2)) were obtained by a solvothermal method. They consist of honeycomb anions and cations, that is, the 5-oxo-1,4,7-triazabicyclo[4.3.0]non-6-en-7-yl ammonium ion (hereafter abbreviated as A(1)) in 1 and the 2-(2,3-dioxo-1-piperazinyl)eth-1-yl ammonium ion (hereafter abbreviated as A(2)) in 2, which were generated from in situ reactions of diethylenetriamine (DETA) with oxalic acid catalyzed by the metal ions and yielded two compounds with different cell parameters: a = 17.2224(4)A, b = 9.3151(2)A, c = 15.1518(4)A, beta = 95.767(1) degrees , V = 2418.5(1)A(3), and Z = 4, C2/c for 1 and a = 9.6924(2)A, b = 15.8325(4)A, c = 17.2995(4)A, beta = 95.144(1) degrees , V = 2644.0(1)A(3), Z = 4, and P2(1)/n for 2. A(1) points its carbonyl group to the pocket of the honeycomb network. A(2) forms a helical chain around the anion layers through hydrogen bonds along the 2(1) axis, and the crystal remains achiral due to the existence of the inversion symmetry. The methanol molecules occupy the holes situated between A(2) and the oxalate network in 2. The distance between two anion layers in 1 was shorter than in 2 due to the template effect of the ammonium salts. In the anion layers, the hexagonal rings are elongated along the a axis in 1 and 2. There are interactions as hydrogen bonds between the cation and anion and between cations. A broad maximum observed in the temperature-dependent susceptibility curve shows antiferromagnetic interactions between paramagnetic ions. The antiferromagnetic ordering at 28 K in 1 and 21 K in 2 was confirmed by ac suspceptibility and specific heat measurements. Hysteresis loops with a coercive field of 17 Oe in 1 and 2300 Oe in 2 were observed at 2 K.

19.
Sci Rep ; 8(1): 4745, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549290

RESUMO

Strong hydrogen bonds such as F···H···F offer new strategies to fabricate molecular architectures exhibiting novel structures and properties. Along these lines and, to potentially realize hydrogen-bond mediated superexchange interactions in a frustrated material, we synthesized [H2F]2[Ni3F6(Fpy)12][SbF6]2 (Fpy = 3-fluoropyridine). It was found that positionally-disordered H2F+ ions link neutral NiF2(Fpy)4 moieties into a kagome lattice with perfect 3-fold rotational symmetry. Detailed magnetic investigations combined with density-functional theory (DFT) revealed weak antiferromagnetic interactions (J ~ 0.4 K) and a large positive-D of 8.3 K with ms = 0 lying below ms = ±1. The observed weak magnetic coupling is attributed to bond-disorder of the H2F+ ions which leads to disrupted Ni-F···H-F-H···F-Ni exchange pathways. Despite this result, we argue that networks such as this may be a way forward in designing tunable materials with varying degrees of frustration.

20.
J Phys Condens Matter ; 29(2): 025809, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27841990

RESUMO

With interest in charge transfer compounds growing steadily, it is important to understand all aspects of the underlying physics of these systems, including the properties of the defects and interfaces that are universally present in actual experimental systems. For the study of these defects and their interactions a spin-Peierls (SP) system provides a useful testing ground. This work presents an investigation within the SP phase of potassium TCNQF4 where anomalous features are observed in both the magnetic susceptibility and ESR spectra for temperatures between 60 K and 100 K. Muon spin spectroscopy measurements confirm the presence of these anomalous magnetic features, with low temperature zero-field data exhibiting the damped oscillatory form that is a characteristic signature of static magnetic order. This ordering is most likely due to the interaction between structurally correlated magnetic defects in the system. The critical behaviour of the temperature dependent muon spin rotation frequency indicates that a 2D Ising model is applicable to the magnetic ordering of these defects. We show that these observations can be explained by a simple model in which the magnetic defects are located at stacking faults, which provide them with a 2D structural framework to constrain their interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA