Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nature ; 611(7937): 780-786, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36385534

RESUMO

Enteric pathogens are exposed to a dynamic polymicrobial environment in the gastrointestinal tract1. This microbial community has been shown to be important during infection, but there are few examples illustrating how microbial interactions can influence the virulence of invading pathogens2. Here we show that expansion of a group of antibiotic-resistant, opportunistic pathogens in the gut-the enterococci-enhances the fitness and pathogenesis of Clostridioides difficile. Through a parallel process of nutrient restriction and cross-feeding, enterococci shape the metabolic environment in the gut and reprogramme C. difficile metabolism. Enterococci provide fermentable amino acids, including leucine and ornithine, which increase C. difficile fitness in the antibiotic-perturbed gut. Parallel depletion of arginine by enterococci through arginine catabolism provides a metabolic cue for C. difficile that facilitates increased virulence. We find evidence of microbial interaction between these two pathogenic organisms in multiple mouse models of infection and patients infected with C. difficile. These findings provide mechanistic insights into the role of pathogenic microbiota in the susceptibility to and the severity of C. difficile infection.


Assuntos
Clostridioides difficile , Enterococcus , Interações Microbianas , Animais , Humanos , Camundongos , Antibacterianos/farmacologia , Arginina/deficiência , Arginina/metabolismo , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidade , Clostridioides difficile/fisiologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Enterococcus/efeitos dos fármacos , Enterococcus/metabolismo , Enterococcus/patogenicidade , Enterococcus/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Intestinos/microbiologia , Leucina/metabolismo , Ornitina/metabolismo , Virulência , Suscetibilidade a Doenças
2.
Anal Chem ; 96(21): 8518-8527, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38711366

RESUMO

Accurate structural determination of proteins is critical to understanding their biological functions and the impact of structural disruption on disease progression. Gas-phase cross-linking mass spectrometry (XL-MS) via ion/ion reactions between multiply charged protein cations and singly charged cross-linker anions has previously been developed to obtain low-resolution structural information on proteins. This method significantly shortens experimental time relative to conventional solution-phase XL-MS but has several technical limitations: (1) the singly deprotonated N-hydroxysulfosuccinimide (sulfo-NHS)-based cross-linker anions are restricted to attachment at neutral amine groups of basic amino acid residues and (2) analyzing terminal cross-linked fragment ions is insufficient to unambiguously localize sites of linker attachment. Herein, we demonstrate enhanced structural information for alcohol-denatured A-state ubiquitin obtained from an alternative gas-phase XL-MS approach. Briefly, singly sodiated ethylene glycol bis(sulfosuccinimidyl succinate) (sulfo-EGS) cross-linker anions enable covalent cross-linking at both ammonium and amine groups. Additionally, covalently modified internal fragment ions, along with terminal b-/y-type counterparts, improve the determination of linker attachment sites. Molecular dynamics simulations validate experimentally obtained gas-phase conformations of denatured ubiquitin. This method has identified four cross-linking sites across 8+ ubiquitin, including two new sites in the N-terminal region of the protein that were originally inaccessible in prior gas-phase XL approaches. The two N-terminal cross-linking sites suggest that the N-terminal half of ubiquitin is more compact in gas-phase conformations. By comparison, the two C-terminal linker sites indicate the signature transformation of this region of the protein from a native to a denatured conformation. Overall, the results suggest that the solution-phase secondary structures of the A-state ubiquitin are conserved in the gas phase. This method also provides sufficient sensitivity to differentiate between two gas-phase conformers of the same charge state with subtle structural variations.


Assuntos
Reagentes de Ligações Cruzadas , Ubiquitina , Ubiquitina/química , Reagentes de Ligações Cruzadas/química , Sódio/química , Gases/química , Cátions/química , Succinimidas/química , Espectrometria de Massas , Íons/química
3.
Anal Chem ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982936

RESUMO

Multimodal imaging analyses of dosed tissue samples can provide more comprehensive insights into the effects of a therapeutically active compound on a target tissue compared to single-modal imaging. For example, simultaneous spatial mapping of pharmaceutical compounds and endogenous macromolecule receptors is difficult to achieve in a single imaging experiment. Herein, we present a multimodal workflow combining imaging mass spectrometry with immunohistochemistry (IHC) fluorescence imaging and brightfield microscopy imaging. Imaging mass spectrometry enables direct mapping of pharmaceutical compounds and metabolites, IHC fluorescence imaging can visualize large proteins, and brightfield microscopy imaging provides tissue morphology information. Single-cell resolution images are generally difficult to acquire using imaging mass spectrometry but are readily acquired with IHC fluorescence and brightfield microscopy imaging. Spatial sharpening of mass spectrometry images would thus allow for higher fidelity coregistration with other higher-resolution microscopy images. Imaging mass spectrometry spatial resolution can be predicted to a finer value via a computational image fusion workflow, which models the relationship between the intensity values in the mass spectrometry image and the features of a high-spatial resolution microscopy image. As a proof of concept, our multimodal workflow was applied to brain tissue extracted from a Sprague-Dawley rat dosed with a kratom alkaloid, corynantheidine. Four candidate mathematical models, including linear regression, partial least-squares regression, random forest regression, and two-dimensional convolutional neural network (2-D CNN), were tested. The random forest and 2-D CNN models most accurately predicted the intensity values at each pixel as well as the overall patterns of the mass spectrometry images, while also providing the best spatial resolution enhancements. Herein, image fusion enabled predicted mass spectrometry images of corynantheidine, GABA, and glutamine to approximately 2.5 µm spatial resolutions, a significant improvement compared to the original images acquired at 25 µm spatial resolution. The predicted mass spectrometry images were then coregistered with an H&E image and IHC fluorescence image of the µ-opioid receptor to assess colocalization of corynantheidine with brain cells. Our study also provides insights into the different evaluation parameters to consider when utilizing image fusion for biological applications.

4.
Anal Chem ; 96(25): 10399-10407, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38858849

RESUMO

It is well-known in biochemistry that structure confers function, meaning that chemical structural elucidation is critical to truly understanding the function of a given metabolite. Indole-3-pyruvate (IPyA) exists in an equilibrium between the keto and enol tautomeric forms. IPyA is suggested to play a role in immune function; however, determining whether the tautomeric forms function differently can only be studied if an analytical method is capable of distinguishing between the two forms. Herein, we describe the use of UHPLC-HRMS to gain insight into the physical variables that govern IPyA tautomer equilibrium, reactivity, and detection limit. We use hydrogen-deuterium exchange (HDX) to identify enol and keto peaks, and we show that tautomers exhibit a valley of fronting followed by a tailing peak shape (though separation is still attainable) and identical MS/MS spectra. We observed drastically different ratios of keto and enol forms in different solvents, which is an important consideration for in vitro studies. IPyA was found to be highly unstable with accelerated reactivity in peroxides. Through in vitro reactivity studies, IPyA produced a myriad of known and unknown metabolites via nonenzymatic processes, many of which were mapped in vivo via the analysis of human plasma. Finally, we show that vitamin C (ascorbic acid) can slow this reactivity and enable sensitive detection in whole blood.


Assuntos
Indóis , Indóis/química , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas em Tandem , Isomerismo
5.
Rapid Commun Mass Spectrom ; 38(17): e9844, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38932679

RESUMO

RATIONALE: Sphingomyelins (SMs) and resulting metabolic products serve important functional and cell signaling roles and can act as potential biomarkers and therapeutic targets in many pathological disorders. SMs each contain a sphingoid base, an amide-linked fatty acyl chain, and a phosphocholine headgroup. Despite these simple building blocks, variations and modifications of both the sphingoid base and the fatty acyl chain result in a diverse array of structurally complicated SM compounds. Conventional tandem mass spectrometry (MS/MS) using the collision-induced dissociation (CID) method only provides limited structural information, necessitating other tools to unravel the structural complexity of these lipids. METHODS: We utilize electron-induced dissociation (EID) and sequential CID/EID approaches to elucidate detailed structural features of SMs. Integrating the CID/EID method into an imaging MS workflow enables accurate identification of SMs directly from kidney tissue. RESULTS: The application of EID enables identification of SMs at the molecular species level, identifying the sphingosine base and the amide-linked fatty acyl chains. Furthermore, removal of the phosphocholine headgroup via CID followed by sequential EID in an MS3 analysis (CID/EID) enhances the structural information obtained. CID/EID provides diagnostic fragmentation patterns revealing the hydroxylation site and double bond position in both the sphingosine base and amide-linked fatty acyl chains. CONCLUSIONS: Detailed structural information of SMs from synthetic standards and biological tissue samples is obtained using an alternative electron-based dissociation method. Accurate characterization of SMs promises to better inform studies of tissue biochemistry, lipid metabolism, and molecular pathology.


Assuntos
Esfingomielinas , Espectrometria de Massas em Tandem , Esfingomielinas/química , Espectrometria de Massas em Tandem/métodos , Animais , Rim/química , Elétrons
6.
Analyst ; 149(8): 2459-2468, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38525787

RESUMO

Abundant chemical noise in MALDI imaging mass spectrometry experiments can impede the detection of less abundant compounds of interest. This chemical noise commonly originates from the MALDI matrix as well as other endogenous compounds present in high concentrations and/or with high ionization efficiencies. MALDI imaging mass spectrometry of biological tissues measures numerous biomolecular compounds that exist in a wide range of concentrations in vivo. When ion trapping instruments are used, highly abundant ions can dominate the charge capacity and lead to space charge effects that hinder the dynamic range and detection of lowly abundant compounds of interest. Gas-phase fractionation has been previously utilized in mass spectrometry to isolate and enrich target analytes. Herein, we have characterized the use of multiple continuous accumulations of selected ions (Multi CASI) to reduce the abundance of chemical noise and diminish the effects of space charge in MALDI imaging mass spectrometry experiments. Multi CASI utilizes the mass-resolving capability of a quadrupole mass filter to perform multiple sequential ion isolation events prior to a single mass analysis of the combined ion population. Multi CASI was used to improve metabolite and lipid detection in the MALDI imaging mass spectrometry analysis of rat brain tissue.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ratos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fenômenos Químicos , Íons/química
7.
Anal Chem ; 95(42): 15707-15715, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37818979

RESUMO

The chemical complexity of biological tissues creates challenges in the analysis of lipids via imaging mass spectrometry. The presence of isobaric and isomeric compounds introduces chemical noise that makes it difficult to unambiguously identify and accurately map the spatial distributions of these compounds. Electron-induced dissociation (EID) has previously been shown to profile phosphatidylcholine (PCs) sn-isomers directly from rat brain tissue in matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry. However, the acquisition of true pixel-by-pixel images, as opposed to regional profiling measurements, using EID is difficult due to low fragmentation efficiency and precursor ion signal dilution into multiple fragment ion channels, resulting in low sensitivity. In this work, we have developed a sequential collision-induced dissociation (CID)/EID method to visualize the distribution of sn-isomers in MALDI imaging mass spectrometry experiments. Briefly, CID is performed on sodium-adducted PCs, which results in facile loss of the phosphocholine headgroup. This ion is then subjected to an EID analysis. Since the lipid headgroup is removed prior to EID, a major fragmentation pathway common to EID ion activation is eliminated, resulting in a more sensitive analysis. This sequential CID/EID workflow generates sn-specific fragment ions allowing for the assignment of the sn-positions. Carbon-carbon double-bond (C═C) positions are also localized along the fatty acyl tails by the presence of a 2 Da shift pattern in the fragment ions arising from carbon-carbon bond cleavages. Moreover, the integration of the CID/EID method into MALDI imaging mass spectrometry enables the mapping of the absolute and relative distribution of sn-isomers at every pixel. The localized relative abundances of sn-isomers vary throughout brain substructures and likely reflect different biological functions and metabolism.


Assuntos
Elétrons , Fosfatidilcolinas , Ratos , Animais , Íons/química , Encéfalo , Carbono
8.
Anal Chem ; 95(48): 17766-17775, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37991720

RESUMO

Accurate structural identification of lipids in imaging mass spectrometry is critical to properly contextualizing spatial distributions with tissue biochemistry. Gas-phase charge inversion ion/ion reactions alter the ion type prior to dissociation to allow for more structurally informative fragmentation and improve lipid identification at the isomeric level. In this work, infrared multiphoton dissociation (IRMPD) was interfaced with a commercial hybrid Qh-FT-ICR mass spectrometer to enable the rapid fragmentation of gas-phase charge inversion ion/ion reaction products at every pixel in imaging mass spectrometry experiments. An ion/ion reaction between phosphatidylcholine (PC) monocations generated from rat brain tissue via matrix-assisted laser desorption/ionization (MALDI) and 1,4-phenylenediproprionic acid reagent dianions generated via electrospray ionization (ESI) followed by IRMPD of the resulting product ion complex produces selective fatty acyl chain cleavages indicative of fatty acyl carbon compositions in the lipid. Ion/ion reaction images using this workflow allow for mapping of the relative spatial distribution of multiple PC isomers under a single sum composition lipid identification. Lipid isomers display significantly different relative spatial distributions within rat brain tissue, highlighting the importance of resolving isomers in imaging mass spectrometry experiments.


Assuntos
Carbono , Fosfatidilcolinas , Animais , Ratos , Fosfatidilcolinas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização por Electrospray/métodos
9.
Anal Bioanal Chem ; 415(18): 4319-4331, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36629896

RESUMO

The separation and identification of lipids in complex mixtures are critical to deciphering their cellular functions. Failure to resolve isobaric compounds (e.g., via high mass resolution or tandem mass spectrometry) can result in incorrect identifications in mass spectrometry experiments. In imaging mass spectrometry, unresolved peaks can also result in composite images of multiple compounds, giving inaccurate depictions of molecular distributions. Gas-phase ion/ion reactions can be used to selectively react with specific chemical functional groups on a target analyte, thereby extracting it from a complex mixture and shifting its m/z value to an unobstructed region of the mass range. Herein, we use selective Schiff base formation via a novel charge inversion ion/ion reaction to purify phosphatidylserines from other isobaric (i.e., same nominal mass) lipids and reveal their singular distributions in imaging mass spectrometry. The selective Schiff base formation between singly deprotonated phosphatidylserine (PS) lipid anions and doubly charged N,N,N',N'-tetramethyl-N,N'-bis(6-oxohexyl)hexane-1,6-diaminium (TMODA) cations is performed using a modified commercial dual source hybrid Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. This process is demonstrated using the isobaric lipids [PS 40:6 - H]- (m/z 834.528) and [SHexCer d38:1 - H]- (m/z 834.576), which produces [PS 40:6 + TMODA - H - H2O]+ (m/z 1186.879), and [SHexCer d38:1 + TMODA - H]+ (m/z 1204.938) product ions following the gas-phase charge inversion reaction. These product ions differ by roughly 18 Da in mass and are easily separated by low mass resolution analysis, while the isobaric precursor ions require roughly 45,000 mass resolving power (full-width at half maximum) to separate. Imaging mass spectrometry using targeted gas-phase ion/ion reactions shows distinct spatial distributions for the separated lipid product ions relative to the composite images of the unseparated precursor ions.


Assuntos
Bases de Schiff , Espectrometria de Massas em Tandem , Bases de Schiff/química , Ânions , Cátions , Lipídeos
10.
Int J Mass Spectrom ; 4852023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37601139

RESUMO

Comprehensive structural characterization of phosphatidylcholines (PCs) is essential to understanding their biological functions and roles in metabolism. Electron induced dissociation (EID) of protonated PCs directly generated from biological tissues has previously been shown to provide in-depth structural information on the lipid headgroup, regiosiomerism of fatty acyl tails and double bond positions. Although phosphatidylcholine ions formed via alkali metal cationization (i.e., [M + Na]+ and [M + K]+) are commonly generated during matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry experiments, the gas-phase ion chemistry behavior of EID on sodium- and potassium-cationized phosphatidylcholine ion types has not been studied for ions generated directly from tissue. Herein, we demonstrate EID on [M + Na]+ and [M + K]+ ion types in a MALDI imaging mass spectrometry workflow for lipid structural characterization. Briefly, near-complete structural information can be obtained upon EID of sodium- and potassium-cationized PCs, including diagnostic fragmentation of the lipid headgroup as well as identification of fatty acyl chain positions and double bond position. EID of cationized lipids generates sn-specific glycerol backbone cleavages as well as a favorable combined loss of sn-2 fatty acid with choline over sn-1, allowing for facile differentiation and relative quantification of PC regioisomers. Moreover, relative quantification of sn-positional isomers from biological tissue reveals that the relative percentages of sodium- and potassium-cationized sn-positional isomers varies significantly in different regions of rat brain tissue.

11.
Anal Chem ; 93(16): 6311-6322, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33856206

RESUMO

Lipids and metabolites are of interest in many clinical and research settings because it is the metabolome that is increasingly recognized as a more dynamic and sensitive molecular measure of phenotype. The enormous diversity of lipid structures and the importance of biological structure-function relationships in a wide variety of applications makes accurate identification a challenging yet crucial area of research in the lipid community. Indeed, subtle differences in the chemical structures of lipids can have important implications in cellular metabolism and many disease pathologies. The speed, sensitivity, and molecular specificity afforded by modern mass spectrometry has led to its widespread adoption in the field of lipidomics on many different instrument platforms and experimental workflows. However, unambiguous and complete structural identification of lipids by mass spectrometry remains challenging. Increasingly sophisticated tandem mass spectrometry (MS/MS) approaches are now being developed and seamlessly integrated into lipidomics workflows to meet this challenge. These approaches generally either (i) alter the type of ion that is interrogated or (ii) alter the dissociation method in order to improve the structural information obtained from the MS/MS experiment. In this Perspective, we highlight recent advances in both ion type alteration and ion dissociation methods for lipid identification by mass spectrometry. This discussion is aimed to engage investigators involved in fundamental ion chemistry and technology developments as well as practitioners of lipidomics and its many applications. The rapid rate of technology development in recent years has accelerated and strengthened the ties between these two research communities. We identify the common characteristics and practical figures of merit of these emerging approaches and discuss ways these may catalyze future directions of lipid structural elucidation research.


Assuntos
Lipidômica , Lipídeos , Espectrometria de Massas em Tandem , Metabolismo dos Lipídeos
12.
Anal Chem ; 92(19): 13192-13201, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32845134

RESUMO

Gas-phase ion/ion reactions have been enabled on a commercial dual source, hybrid QhFT-ICR mass spectrometer for use during imaging mass spectrometry experiments. These reactions allow for the transformation of the ion type most readily generated from the tissue surface to an ion type that gives improved chemical structural information upon tandem mass spectrometry (MS/MS) without manipulating the tissue sample. This process is demonstrated via the charge inversion reaction of phosphatidylcholine (PC) lipid cations generated from rat brain tissue via matrix-assisted laser desorption/ionization (MALDI) with 1,4-phenylenedipropionic acid (PDPA) reagent dianions generated via electrospray ionization (ESI). Collision-induced dissociation (CID) of the resulting demethylated PC product anions allows for the determination of the lipid fatty acyl tail identities and positions, which is not possible via CID of the precursor lipid cations. The abundance of lipid isomers revealed by this workflow is found to vary significantly in different regions of the brain. As each isoform may have a unique cellular function, these results underscore the importance of accurately separating and identifying the many isobaric and isomeric lipids and metabolites that can complicate image interpretation and spectral analysis.


Assuntos
Fosfatidilcolinas/análise , Animais , Encéfalo , Gases/química , Íons/química , Espectrometria de Massas , Estrutura Molecular , Ratos , Estereoisomerismo
13.
Anal Chem ; 92(19): 13092-13100, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32845133

RESUMO

In the analysis of biological tissue by imaging mass spectrometry (IMS), the limit of detection and dynamic range are of paramount importance in obtaining experimental results that provide insight into underlying biological processes. Many important biomolecules are present in the tissue milieu in low concentrations and in complex mixtures with other compounds of widely ranging abundances, challenging the limits of analytical technologies. In many IMS experiments, the ion signal can be dominated by a few highly abundant ion species. On trap-based instrument platforms that accumulate ions prior to mass analysis, these high abundance ions can diminish the detection and dynamic range of lower abundance ions. Herein, we describe two strategies for combating these challenges during IMS experiments on a hybrid QhFT-ICR MS. In one iteration, the mass resolving capabilities of a quadrupole mass filter are used to selectively enrich ions of interest via a technique previously termed continuous accumulation of selected ions. Second, we have introduced a supplemental dipolar AC waveform to the quadrupole mass filter of a commercial QhFT-ICR mass spectrometer to perform selected ion ejection prior to the ion accumulation region. This setup allows the selective ejection of the most abundant ion species prior to ion accumulation, thereby greatly improving the molecular depth with which IMS can probe tissue samples. The gain in sensitivity of both of these approaches roughly scales with the number of accumulated laser shots up to the charge capacity of the ion accumulation cell. The efficiencies of these two strategies are described here by performing lipid imaging mass spectrometry analyses of a rat brain.


Assuntos
Encéfalo/metabolismo , Lipídeos/análise , Animais , Gases/química , Íons/química , Espectrometria de Massas , Ratos
14.
Diabetologia ; 62(6): 1036-1047, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30955045

RESUMO

AIMS/HYPOTHESIS: The molecular response and function of pancreatic islet cells during metabolic stress is a complex process. The anatomical location and small size of pancreatic islets coupled with current methodological limitations have prevented the achievement of a complete, coherent picture of the role that lipids and proteins play in cellular processes under normal conditions and in diseased states. Herein, we describe the development of untargeted tissue imaging mass spectrometry (IMS) technologies for the study of in situ protein and, more specifically, lipid distributions in murine and human pancreases. METHODS: We developed matrix-assisted laser desorption/ionisation (MALDI) IMS protocols to study metabolite, lipid and protein distributions in mouse (wild-type and ob/ob mouse models) and human pancreases. IMS allows for the facile discrimination of chemically similar lipid and metabolite isoforms that cannot be distinguished using standard immunohistochemical techniques. Co-registration of MS images with immunofluorescence images acquired from serial tissue sections allowed accurate cross-registration of cell types. By acquiring immunofluorescence images first, this serial section approach guides targeted high spatial resolution IMS analyses (down to 15 µm) of regions of interest and leads to reduced time requirements for data acquisition. RESULTS: MALDI IMS enabled the molecular identification of specific phospholipid and glycolipid isoforms in pancreatic islets with intra-islet spatial resolution. This technology shows that subtle differences in the chemical structure of phospholipids can dramatically affect their distribution patterns and, presumably, cellular function within the islet and exocrine compartments of the pancreas (e.g. 18:1 vs 18:2 fatty acyl groups in phosphatidylcholine lipids). We also observed the localisation of specific GM3 ganglioside lipids [GM3(d34:1), GM3(d36:1), GM3(d38:1) and GM3(d40:1)] within murine islet cells that were correlated with a higher level of GM3 synthase as verified by immunostaining. However, in human pancreas, GM3 gangliosides were equally distributed in both the endocrine and exocrine tissue, with only one GM3 isoform showing islet-specific localisation. CONCLUSIONS/INTERPRETATION: The development of more complete molecular profiles of pancreatic tissue will provide important insight into the molecular state of the pancreas during islet development, normal function, and diseased states. For example, this study demonstrates that these results can provide novel insight into the potential signalling mechanisms involving phospholipids and glycolipids that would be difficult to detect by targeted methods, and can help raise new hypotheses about the types of physiological control exerted on endocrine hormone-producing cells in islets. Importantly, the in situ measurements afforded by IMS do not require a priori knowledge of molecules of interest and are not susceptible to the limitations of immunohistochemistry, providing the opportunity for novel biomarker discovery. Notably, the presence of multiple GM3 isoforms in mouse islets and the differential localisation of lipids in human tissue underscore the important role these molecules play in regulating insulin modulation and suggest species, organ, and cell specificity. This approach demonstrates the importance of both high spatial resolution and high molecular specificity to accurately survey the molecular composition of complex, multi-functional tissues such as the pancreas.


Assuntos
Ilhotas Pancreáticas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Imunofluorescência , Gangliosídeos/análise , Humanos , Imuno-Histoquímica , Camundongos , Pâncreas
15.
Int J Mass Spectrom ; 437: 30-37, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30906202

RESUMO

Tandem mass spectrometry (MS/MS) is often used to identify lipids in matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) workflows. The molecular specificity afforded by MS/MS is crucial on MALDI time-of-flight (TOF) platforms that generally lack high resolution accurate mass measurement capabilities. Unfortunately, imaging MS/MS workflows generally only monitor a single precursor ion over the imaged area, limiting the throughput of this methodology. Herein, we demonstrate that multiple TOF/TOF events performed in each laser shot can be used to improve the throughput of imaging MS/MS. This is shown to enable the simultaneous identification of multiple phosphatidylcholine lipids in rat brain tissue. Uniquely, the separation in time achieved for the precursor ions in the TOF-1 region of the instrument is maintained for the fragment ions as they are analyzed in TOF-2, allowing for the differentiation of fragment ions of the exact same m/z derived from different precursor ions (e.g., the m/z 163 fragment ion from precursor ion m/z 772.5 is easily distinguished from the m/z 163 fragment ion from precursor ion m/z 826.5). This multiplexed imaging MS/MS approach allows for the acquisition of complete fragment ion spectra for multiple precursor ions per laser shot.

16.
Anal Chem ; 90(8): 5090-5099, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29444410

RESUMO

The molecular identification of species of interest is an important part of an imaging mass spectrometry (IMS) experiment. The high resolution accurate mass capabilities of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) have recently been shown to facilitate the identification of proteins in matrix-assisted laser desorption/ionization (MALDI) IMS. However, these experiments are typically limited to proteins giving rise to ions of relatively low m/ z due to difficulties transmitting and measuring large molecular weight ions of low charge states. Herein we have modified the source gas manifold of a commercial MALDI FT-ICR MS to regulate the gas flow and pressure to maximize the transmission of large m/ z protein ions through the ion funnel region of the instrument. By minimizing the contribution of off-axis gas disruption to ion focusing and maximizing the effective potential wall confining the ions through pressure optimization, the signal-to-noise ratios (S/N) of most protein species were improved by roughly 1 order of magnitude compared to normal source conditions. These modifications enabled the detection of protein standards up to m/ z 24 000 and the detection of proteins from tissue up to m/ z 22 000 with good S/N, roughly doubling the mass range for which high quality protein ion images from rat brain and kidney tissue could be produced. Due to the long time-domain transients (>4 s) required to isotopically resolve high m/ z proteins, we have used these data as part of an FT-ICR IMS-microscopy data-driven image fusion workflow to produce estimated protein images with both high mass and high spatial resolutions.


Assuntos
Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Apoproteínas/química , Encéfalo/metabolismo , Íons/química , Rim/metabolismo , Peso Molecular , Mioglobina/química , Ratos , Razão Sinal-Ruído , Ubiquitina/química
17.
Rapid Commun Mass Spectrom ; 32(5): 442-450, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29226434

RESUMO

RATIONALE: Liquid extraction surface analysis (LESA) can be used to generate spatially directed protein identifications in an imaging mass spectrometry (IMS) workflow. This approach involves the use of robotic micro-extractions coupled to online liquid chromatography (LC). We have characterized the extraction efficiency of this method as well as its ability to identify proteins from a matrix assisted laser/desorption ionization (MALDI) IMS experiment. METHODS: Proteins and peptides were extracted from transverse sections of a rat brain and sagittal sections of a mouse pup using liquid surface extractions. Extracts were either analyzed by online LC coupled to a high mass resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer or collected offline and analyzed by traditional LC/MS methods. Identifications were made using both top-down and bottom-up methodologies. MALDI images were acquired on a 15T FTICR mass spectrometer at 125 µm spatial resolution. RESULTS: Robotic liquid surface extractions are reproducible across various tissue types, providing significantly improved spatial resolution, with respect to extractions, while still allowing for a robust number of protein identifications. A single 2-µL extract can provide identification of over 14,000 peptides with little sample preparation, increasing throughput for spatially targeted workflows. Surface extractions from tissue were coupled directly to LC to gather spatially relevant proteomics data. CONCLUSIONS: Robotic liquid surface extractions can be used to interrogate discrete regions of tissue to provide protein identifications with high throughput, accuracy, and robustness. The direct coupling of tissue surface extractions and LC offers a new and effective approach to provide spatial proteomics data in an imaging experiment.

18.
J Proteome Res ; 16(3): 1364-1375, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28088864

RESUMO

An understanding of how cells respond to perturbation is essential for biological applications; however, most approaches for profiling cellular response are limited in scope to pre-established targets. Global analysis of molecular mechanism will advance our understanding of the complex networks constituting cellular perturbation and lead to advancements in areas, such as infectious disease pathogenesis, developmental biology, pathophysiology, pharmacology, and toxicology. We have developed a high-throughput multiomics platform for comprehensive, de novo characterization of cellular mechanisms of action. Platform validation using cisplatin as a test compound demonstrates quantification of over 10 000 unique, significant molecular changes in less than 30 days. These data provide excellent coverage of known cisplatin-induced molecular changes and previously unrecognized insights into cisplatin resistance. This proof-of-principle study demonstrates the value of this platform as a resource to understand complex cellular responses in a high-throughput manner.


Assuntos
Células/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Redes e Vias Metabólicas , Apoptose , Linhagem Celular , Sobrevivência Celular , Cisplatino/farmacologia , Biologia Computacional/métodos , Humanos
19.
Kidney Int ; 92(3): 580-598, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28750926

RESUMO

In this review, we will highlight technologies that enable scientists to study the molecular characteristics of tissues and/or cells without the need for antibodies or other labeling techniques. Specifically, we will focus on matrix-assisted laser desorption/ionization imaging mass spectrometry, infrared spectroscopy, and Raman spectroscopy.


Assuntos
Nefropatias/patologia , Imagem Molecular/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrofotometria Infravermelho/métodos , Análise Espectral Raman/métodos , Humanos , Rim/patologia , Imagem Molecular/tendências , Vibração
20.
Anal Chem ; 89(5): 2948-2955, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28193007

RESUMO

The identification of proteins from tissue specimens is a challenging area of biological research. Many current techniques for identification forfeit some level of spatial information during the sample preparation process. Recently, hydrogel technologies have been developed that perform spatially localized protein extraction and digestion prior to downstream proteomic analysis. Regiospecific protein identifications acquired using this approach have thus far been limited to 1-2 mm diameter areas. The need to target smaller populations of cells with this technology necessitates the production of smaller diameter hydrogels. Herein, we demonstrate hydrogel fabrication processes that allow hydrogel applications down to a diameter of ∼260 µm, approximately 1/15 of the area of previous approaches. Parameters such as the percent polyacrylamide used in hydrogel construction as well as the concentration of trypsin with which the hydrogel is loaded are investigated to maximize the number of protein identifications from subsequent liquid chromatography tandem MS (LC-MS/MS) analysis of hydrogel extracts. An 18% polyacrylamide concentration is shown to provide for a more rigid polymer network than the conventional 7.5% polyacrylamide concentration and supports the fabrication of individual hydrogels using the small punch biopsies. Over 600 protein identifications are still achieved at the smallest hydrogel diameters of 260 µm. The utility of these small hydrogels is demonstrated through the analysis of sub regions of a rat cerebellum tissue section. While over 900 protein identifications are made from each hydrogel, approximately 20% of the proteins identified are unique to each of the two regions, highlighting the importance of targeting tissue subtypes to accurately characterize tissue biology. These newly improved methods to the hydrogel process will allow researchers to target smaller biological features for robust spatially localized proteomic analyses.


Assuntos
Cerebelo/metabolismo , Hidrogéis/química , Proteínas/análise , Espectrometria de Massas em Tandem , Resinas Acrílicas/química , Animais , Cromatografia Líquida de Alta Pressão , Fígado/metabolismo , Proteínas/metabolismo , Proteólise , Ratos , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA