Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Nano Mater ; 4(4): 3476-3485, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35874274

RESUMO

Bidimensional (2D) materials are nowadays being developed as outstanding candidates for electronic and optoelectronic components and devices. Targeted applications include sensing, energy conversion, and storage. Phosphorene is one of the most promising systems in this context, but its high reactivity under atmospheric conditions and its small-area/lab-scale deposition techniques have hampered the introduction of this material in real-world applications so far. However, phosphorene oxides in the form of low-dimensional structures (2D PO x ) should behave as an electroresponsive material according to recent theoretical studies. In the present work, we introduce electrospraying for the deposition of stoichiometric and large-area 2D PO x nanoflakes starting from a suspension of liquid-phase-exfoliated phosphorene. We obtained 2D PO x nanostructures with a mean surface area two orders of magnitude larger than phosphorene structures obtained with standard mechanical and liquid exfoliation techniques. X-ray spectroscopy and high-resolution electron microscopy confirmed the P2O5-like crystallographic structure of the electrosprayed flakes. Finally, we experimentally demonstrated for the first time the electromechanical responsivity of the 2D P2O5 nanoflakes, through piezoresponse force microscopy (PFM). This work sheds light on the possible implementation of phosphorus oxide-based 2D nanomaterials in the value chain of fabrication and engineering of devices, which might be easily scaled up for energy-harvesting/conversion applications.

2.
Polymers (Basel) ; 12(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878177

RESUMO

End functionalized polylactides are prepared by ring opening polymerization of L-lactide in the presence of stannous octoate (Sn(Oct)2). Three chromophores, 9H-carbazol-ethanol (CA), 9-fluorenyl-methanol (FM), and 2-(4-(2-chloro-4-nitrophenylazo)-N-ethylphenylamino)ethanol (Disperse Red 13, DR), are for the first time used as co-initiators in the polymerization process. The polymerization reaction is initiated by conventional thermal treatment, but in the case of FM, microwave-assisted polymerization is also carried out. CA and FM absorb and emit in the UV portion of the electromagnetic spectrum, whereas DR absorbs in the visible part. The obtained end-capped polylactides derivatives show the same photophysical properties as the initiator, so they are "macromolecular dyes" (MDs) that can be used "as synthesized" or can be blended with commercial poly(lactic acid) (PLA). The blends of PLA with MDs have ultraviolet-visible (UV-Vis) absorption and fluorescence emission features similar to that of MDs and thermal properties typical of PLA. Finally, migration tests, carried out onto the blends of PLA with MDs and PLA with free chromophores, show that MDs are less released than free chromophores both in solution and in the solid phase.

3.
ACS Appl Mater Interfaces ; 12(27): 30616-30626, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32519550

RESUMO

Organic field-effect transistors (OFETs) are key enabling devices for plastic electronics technology, which has a potentially disruptive impact on a variety of application fields, such as health, safety, and communication. Despite the tremendous advancements in understanding the OFET working mechanisms and device performance, further insights into the complex correlation between the nature of the charge-injecting contacts and the electrical characteristics of devices are still necessary. Here, an in-depth study of the metal-organic interfaces that provides a direct correlation to the performance of OFET devices is reported. The combination of synchrotron X-ray spectroscopy, atomic force microscopy, electron microscopy, and theoretical simulations on two selected electron transport organic semiconductors with tailored chemical structures allows us to gain insights into the nature of the injecting contacts. This multiple analysis repeated at the different stages of contact formation provides a clear picture on the synergy between organic/metal interactions, interfacial morphology, and structural organization of the electrode. The simultaneous synchrotron X-ray experiments and electrical measurements of OFETs in operando uncovers how the nature of the charge-injecting contacts has a direct impact on the injection potential of OFETs.

4.
Adv Healthc Mater ; 8(3): e1801139, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30565894

RESUMO

Organic bioelectronics have a huge potential to generate interfaces and devices for the study of brain functions and for the therapy of brain pathologies. In this context, increasing efforts are needed to develop technologies for monitoring and stimulation of nonexcitable brain cells, called astrocytes. Astroglial calcium signaling plays, indeed, a pivotal role in the physiology and pathophysiology of the brain. Here, the use of transparent organic cell stimulating and sensing transistor (O-CST) architecture, fabricated with N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13), to elicit and monitor intracellular calcium concentration ([Ca2+ ]i ) in primary rat neocortical astrocytes is demonstrated. The transparency of O-CST allows performing calcium imaging experiments, showing that extracellular electrical stimulation of astrocytes induces a drastic increase in [Ca2+ ]i . Pharmacological studies indicate that transient receptor potential (TRP) superfamily are critical mediators of the [Ca2+ ]i increase. Experimental and computational analyses show that [Ca2+ ]i response is enabled by the O-CST device architecture. Noteworthy, the extracellular field application induces a slight but significant increase in the cell volume. Collectively, it is shown that the O-CST is capable of selectively evoking astrocytes [Ca2+ ]i , paving the way to the development of organic bioelectronic devices as glial interfaces to excite and control physiology of non-neuronal brain cells.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Transistores Eletrônicos , Animais , Astrócitos/citologia , Encéfalo/citologia , Células Cultivadas , Estimulação Elétrica , Ratos , Ratos Sprague-Dawley
5.
Nanoscale ; 11(37): 17252-17261, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31317153

RESUMO

Mechanically exfoliated two-dimensional (2D) black phosphorus (bP) is epitaxially terminated by monolayers and multilayers of tetracosane, a linear alkane, to form a weakly interacting van der Waals heterostructure. Atomic force microscopy (AFM) and computational modelling show that epitaxial domains of alkane chains are ordered in parallel lamellae along the principal crystalline axis of bP, and this order is extended over a few layers above the interface. Epitaxial alkane multilayers delay the oxidation of 2D bP in air by 18 hours, in comparison to 1 hour for bare 2D bP, and act as an electrical insulator, as demonstrated using electrostatic force microscopy. The presented heterostructure is a technologically relevant insulator-semiconductor model system that can open the way to the use of 2D bP in micro- and nanoelectronic, optoelectronic and photonic applications.

6.
ACS Appl Mater Interfaces ; 11(25): 22637-22647, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31141339

RESUMO

We studied the chemical-physical nature of interactions involved in the formation of adducts of two-dimensional black phosphorus (2D BP) with organoboron derivatives of a conjugated fluorescent molecule (pyrene). Time-resolved fluorescence spectroscopy showed a stabilization effect of 2D BP on all derivatives, in particular for the adducts endowed with the boronic functionalities. Also, a stronger modulation of the fluorescence decay with oxygen was registered for one of the adducts compared to the corresponding organoboron derivative alone. Nuclear magnetic resonance experiments in suspension and density functional theory simulations confirmed that only noncovalent interactions were involved in the formation of the adducts. The energetic gain in their formation arises from the interaction of P atoms with both C atoms of the pyrene core and the B atom of the boronic functionalities, with a stronger contribution from the ester with respect to the acid one. The interaction results in the lowering of the band gap of 2D BP by around 0.10 eV. Furthermore, we demonstrated through Raman spectroscopy an increased stability toward oxidation in air of 2D BP in the adducts in the solid state (more than 6 months). The modification of the electronic structure at the interface between 2D BP and a conjugated organic molecule through noncovalent stabilizing interactions mediated by the B atom is particularly appealing in view of creating heterojunctions for optoelectronic, photonic, and chemical sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA