Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260386

RESUMO

Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non-nitrogen-fixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species.


Assuntos
Fabaceae/fisiologia , Pradaria , Internacionalidade , Nitrogênio/farmacologia , Fósforo/farmacologia , Biodiversidade , Biomassa , Fabaceae/efeitos dos fármacos , Probabilidade
2.
Mol Ecol ; 32(17): 4921-4939, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452603

RESUMO

Fire has shaped global ecosystems for millennia by directly killing organisms and indirectly altering habitats and resources. All terrestrial ecosystems, including fire-prone ecosystems, rely on soil-inhabiting fungi, where they play vital roles in ecological processes. Yet our understanding of how fire regimes influence soil fungi remains limited and our knowledge of these interactions in semiarid landscapes is virtually absent. We collected soil samples and vegetation measurements from sites across a gradient in time-since-fire ages (0-75 years-since-fire) and fire frequency (burnt 0-5 times during the recent 29-year period) in a semiarid heathland of south-eastern Australia. We characterized fungal communities using ITS amplicon-sequencing and assigned fungi taxonomically to trophic guilds. We used structural equation models to examine direct, indirect and total effects of time-since-fire and fire frequency on total fungal, ectomycorrhizal, saprotrophic and pathogenic richness. We used multivariate analyses to investigate how total fungal, ectomycorrhizal, saprotrophic and pathogenic species composition differed between post-fire successional stages and fire frequency classes. Time-since-fire was an important driver of saprotrophic richness; directly, saprotrophic richness increased with time-since-fire, and indirectly, saprotrophic richness declined with time-since-fire (resulting in a positive total effect), mediated through the impact of fire on substrates. Frequently burnt sites had lower numbers of saprotrophic and pathogenic species. Post-fire successional stages and fire frequency classes were characterized by distinct fungal communities, with large differences in ectomycorrhizal species composition. Understanding the complex responses of fungal communities to fire can be improved by exploring how the effects of fire flow through ecosystems. Diverse fire histories may be important for maintaining the functional diversity of fungi in semiarid regions.


Assuntos
Incêndios , Micobioma , Micorrizas , Ecossistema , Solo , Microbiologia do Solo , Fungos/genética
3.
Mycorrhiza ; 31(3): 423-430, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33674909

RESUMO

Elevated atmospheric CO2 concentration (eCO2) effects on plants depend on several factors including plant photosynthetic physiology (e.g. C3, C4), soil nutrient availability and plants' co-evolved soil-dwelling fungal symbionts, namely arbuscular mycorrhizal (AM) fungi. Complicated interactions among these components will determine the outcomes for plants. Therefore, clearer understanding is needed of how plant growth and nutrient uptake, along with root-colonising AM fungal communities, are simultaneously impacted by eCO2. We conducted a factorial growth chamber experiment with a C3 and a C4 grass species (± AM fungi and ± eCO2). We found that eCO2 increased plant biomass allocation towards the roots, but only in plants without AM fungi, potentially associated with an eCO2-driven increase in plant nutrient requirements. Furthermore, our data suggest a difference in the identities of root-colonising fungal taxa between ambient CO2 and eCO2 treatments, particularly in the C4 grass species, although this was not statistically significant. As AM fungi are ubiquitous partners of grasses, their response to increasing atmospheric CO2 is likely to have important consequences for how grassland ecosystems respond to global change.


Assuntos
Micorrizas , Dióxido de Carbono , Ecossistema , Fungos , Raízes de Plantas , Plantas , Solo , Simbiose
4.
Glob Chang Biol ; 26(8): 4572-4582, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32520438

RESUMO

Microbial processing of aggregate-unprotected organic matter inputs is key for soil fertility, long-term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro- and micro-nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak-season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.


Assuntos
Ecossistema , Pradaria , Carbono , Nitrogênio/análise , Nutrientes , Solo
5.
Ecol Lett ; 20(12): 1534-1545, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29067791

RESUMO

Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales.


Assuntos
Biodiversidade , Ecossistema , Plantas , Reprodutibilidade dos Testes
6.
Exp Aging Res ; 43(4): 391-408, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28718752

RESUMO

Background/Study Context: Self-regulated learning involves deciding what to study and for how long. Debate surrounds whether individuals' selections are influenced more by item complexity, point values, or if instead people select in a left-to-right reading order, ignoring item complexity and value. The present study manipulated whether point values and presentation format favored selection of simple or complex Chinese-English pairs to assess the impact on younger and older adults' selection behaviors. METHODS: One hundred and five younger (Mage = 20.26, SD = 2.38) and 102 older adults (Mage = 70.28, SD = 6.37) participated in the experiment. Participants studied four different 3 × 3 grids (two per trial), each containing three simple, three medium, and three complex Chinese-English vocabulary pairs presented in either a simple-first or complex-first order, depending on condition. Point values were assigned in either a 2-4-8 or 8-4-2 order so that either simple or complex items were favored. RESULTS: Points did not influence the order in which either age group selected items, whereas presentation format did. Younger and older adults selected more simple or complex items when they appeared in the first column. However, older adults selected and allocated more time to simpler items but recalled less overall than did younger adults. Memory beliefs and working memory capacity predicted study time allocation, but not item selection, behaviors. CONCLUSION: Presentation format must be considered when evaluating which theory of self-regulated learning best accounts for younger and older adults' study behaviors and whether there are age-related differences in self-regulated learning. The results of the present study combine with others to support the importance of also considering the role of external factors (e.g., working memory capacity and memory beliefs) in each age group's self-regulated learning decisions.


Assuntos
Envelhecimento/psicologia , Aprendizagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Leitura , Vocabulário , Adulto Jovem
8.
Oecologia ; 175(1): 261-71, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24469341

RESUMO

A popular hypothesis for tree and grass coexistence in savannas is that tree seedlings are limited by competition from grasses. However, competition may be important in favourable climatic conditions when abiotic stress is low, whereas facilitation may be more important under stressful conditions. Seasonal and inter-annual fluctuations in abiotic conditions may alter the outcome of tree-grass interactions in savanna systems and contribute to coexistence. We investigated interactions between coolibah (Eucalyptus coolabah) tree seedlings and perennial C4 grasses in semi-arid savannas in eastern Australia in contrasting seasonal conditions. In glasshouse and field experiments, we measured survival and growth of tree seedlings with different densities of C4 grasses across seasons. In warm glasshouse conditions, where water was not limiting, competition from grasses reduced tree seedling growth but did not affect tree survival. In the field, all tree seedlings died in hot dry summer conditions irrespective of grass or shade cover, whereas in winter, facilitation from grasses significantly increased tree seedling survival by ameliorating heat stress and protecting seedlings from herbivory. We demonstrated that interactions between tree seedlings and perennial grasses vary seasonally, and timing of tree germination may determine the importance of facilitation or competition in structuring savanna vegetation because of fluctuations in abiotic stress. Our finding that trees can grow and survive in a dense C4 grass sward contrasts with the common perception that grass competition limits woody plant recruitment in savannas.


Assuntos
Ecossistema , Eucalyptus/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Estações do Ano , Austrália , Plântula/crescimento & desenvolvimento , Temperatura , Árvores/crescimento & desenvolvimento , Água
9.
Oecologia ; 173(2): 545-55, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23468237

RESUMO

Recent meta-analyses and simulation studies have suggested that the relationship between soil resource heterogeneity and plant diversity (heterogeneity-diversity relationship; HDR) may be negative when heterogeneity occurs at small spatial scales. To explore different mechanisms that can explain a negative HDR, we conducted a mesocosm experiment combining a gradient of soil nutrient availability (low, medium, high) and scale of heterogeneity (homogeneous, large-scale heterogeneous, small-scale heterogeneous). The two heterogeneous treatments were created using chessboard combinations of low and high fertility patches, and had the same overall fertility as the homogeneous medium treatment. Soil patches were designed to be relatively larger (156 cm(2)) and smaller (39 cm(2)) than plant root extent. We found plant diversity was significantly lower in the small-scale heterogeneous treatment compared to the homogeneous treatment of the same fertility. Additionally, low fertility patches in the small-scale heterogeneous treatment had lower diversity than patches of the same size in the low fertility treatment. Shoot and root biomass were larger in the small-scale heterogeneous treatment than in the homogeneous treatment of the same fertility. Further, we found that soil resource heterogeneity may reduce diversity indirectly by increasing shoot biomass, thereby enhancing asymmetric competition for light resources. When soil resource heterogeneity occurs at small spatial scales it can lower plant diversity by increasing asymmetric competition belowground, since plants with large root systems can forage among patches and exploit soil resources. Additionally, small-scale soil heterogeneity may lower diversity indirectly, through increasing light competition, when nutrient uptake by competitive species increases shoot biomass production.


Assuntos
Biodiversidade , Biomassa , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Solo/química , Ecossistema , Estônia
10.
Commun Biol ; 6(1): 1220, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040868

RESUMO

Covering approximately 40% of land surfaces, grasslands provide critical ecosystem services that rely on soil organisms. However, the global determinants of soil biodiversity and functioning remain underexplored. In this study, we investigate the drivers of soil microbial and detritivore activity in grasslands across a wide range of climatic conditions on five continents. We apply standardized treatments of nutrient addition and herbivore reduction, allowing us to disentangle the regional and local drivers of soil organism activity. We use structural equation modeling to assess the direct and indirect effects of local and regional drivers on soil biological activities. Microbial and detritivore activities are positively correlated across global grasslands. These correlations are shaped more by global climatic factors than by local treatments, with annual precipitation and soil water content explaining the majority of the variation. Nutrient addition tends to reduce microbial activity by enhancing plant growth, while herbivore reduction typically increases microbial and detritivore activity through increased soil moisture. Our findings emphasize soil moisture as a key driver of soil biological activity, highlighting the potential impacts of climate change, altered grazing pressure, and eutrophication on nutrient cycling and decomposition within grassland ecosystems.


Assuntos
Ecossistema , Pradaria , Solo/química , Microbiologia do Solo , Biodiversidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA