Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Vis ; 22: 1291-1308, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27829784

RESUMO

PURPOSE: Interphotoreceptor retinoid-binding protein (IRBP) is abundant in the subretinal space and binds retinoids and lipophilic molecules. The expression of IRBP begins precociously early in mouse eye development. IRBP-deficient (KO) mice show less cell death in the inner retinal layers of the retina before eyelid opening compared to wild-type C57BL/6J (WT) controls and eventually develop profound myopia. Thus, IRBP may play a role in eye development before visually-driven phenomena. We report comparative observations during the course of the natural development of eyes in WT and congenic IRBP KO mice that suggest IRBP is necessary at the early stages of mouse eye development for correct function and development to exist in later stages. METHODS: We observed the natural development of congenic WT and IRBP KO mice, monitoring several markers of eye size and development, including haze and clarity of optical components in the eye, eye size, axial length, immunohistological markers of differentiation and eye development, visually guided behavior, and levels of a putative eye growth stop signal, dopamine. We conducted these measurements at several ages. Slit-lamp examinations were conducted at post-natal day (P)21. Fundus and spectral domain optical coherence tomography (SD-OCT) images were compared at P15, P30, P45, and P80. Enucleated eyes from P5 to P10 were measured for weight, and ocular dimensions were measured with a noncontact light-emitting diode (LED) micrometer. We counted the cells that expressed tyrosine hydroxylase (TH-positive cells) at P23-P36 using immunohistochemistry on retinal flatmounts. High-performance liquid chromatography (HPLC) was used to analyze the amounts of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) at P7-P60. Monocular form deprivation in the right eye was induced using head-mounted goggles from P28 to P56. RESULTS: Eye elongation and eye size in the IRBP KO mice began to increase at P7 compared to the WT mice. This difference increased until P12, and the difference was maintained thereafter. SD-OCT images in live mice confirmed previously reported retinal thinning of the outer nuclear layer in the IRBP KO mice compared to the WT mice from P15 to P80. Slit-lamp and fundoscopy examination outcomes did not differ between the WT and KO mice. SD-OCT measurements of the optical axis components showed that the only factor contributing to excess optical axis length was the depth of the vitreous body. No other component of optical axis length (including corneal thickness, anterior chamber depth, and lens thickness) was different from that of the WT mouse. The refractive power of the IRBP KO mice did not change in response to form deprivation. The number of retinal TH-positive cells was 28% greater in the IRBP KO retinas compared to the WT mice at P30. No significant differences were observed in the steady-state retinal DA or DOPAC levels or in the DOPAC/DA ratios between the WT and IRBP KO mice. CONCLUSIONS: The IRBP KO mouse eye underwent precocious development and rapid eye size growth temporally about a day sooner than the WT mouse eye. Eye size began to differ between the WT and KO mice before eyelid opening, indicating no requirement for focus-dependent vision, and suggesting a developmental abnormality in the IRBP KO mouse eye that precedes form vision-dependent emmetropization. Additionally, the profoundly myopic KO eye did not respond to form deprivation compared to the non-deprived contralateral eye. Too much growth occurred in some parts of the eye, possibly upsetting a balance among size, differentiation, and focus-dependent growth suppression. Thus, the loss of IRBP may simply cause growth that is too rapid, possibly due to a lack of sequestration or buffering of morphogens that normally would bind to IRBP but are unbound in the IRBP KO eye. Despite the development of profound myopia, the DA levels in the IRBP KO mice were not statistically different from those in the WT mice, even with the excess of TH-positive cells in the IRBP KO mice compared to the WT mice. Overall, these data suggest that abnormal eye elongation in the IRBP KO mouse is independent of, precedes, and is epistatic to the process(es) of visually-driven refractive development.


Assuntos
Comprimento Axial do Olho/patologia , Olho/crescimento & desenvolvimento , Miopia/etiologia , Proteínas de Ligação ao Retinol/deficiência , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Proteínas do Olho , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miopia/patologia , Retina/patologia , Tomografia de Coerência Óptica
2.
Elife ; 122023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715686

RESUMO

Induced pluripotent stem cells (iPSCs) are potential cell sources for regenerative medicine. The iPSCs exhibit a preference for lineage differentiation to the donor cell type indicating the existence of memory of origin. Although the intrinsic effect of the donor cell type on differentiation of iPSCs is well recognized, whether disease-specific factors of donor cells influence the differentiation capacity of iPSC remains unknown. Using viral based reprogramming, we demonstrated the generation of iPSCs from chondrocytes isolated from healthy (AC-iPSCs) and osteoarthritis cartilage (OA-iPSCs). These reprogrammed cells acquired markers of pluripotency and differentiated into uncommitted mesenchymal-like progenitors. Interestingly, AC-iPSCs exhibited enhanced chondrogenic potential as compared OA-iPSCs and showed increased expression of chondrogenic genes. Pan-transcriptome analysis showed that chondrocytes derived from AC-iPSCs were enriched in molecular pathways related to energy metabolism and epigenetic regulation, together with distinct expression signature that distinguishes them from OA-iPSCs. Our molecular tracing data demonstrated that dysregulation of epigenetic and metabolic factors seen in OA chondrocytes relative to healthy chondrocytes persisted following iPSC reprogramming and differentiation toward mesenchymal progenitors. Our results suggest that the epigenetic and metabolic memory of disease may predispose OA-iPSCs for their reduced chondrogenic differentiation and thus regulation at epigenetic and metabolic level may be an effective strategy for controlling the chondrogenic potential of iPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Osteoartrite , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transcriptoma , Epigênese Genética , Cartilagem , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Osteoartrite/genética , Osteoartrite/metabolismo
3.
J Biomed Mater Res A ; 109(6): 951-965, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32786025

RESUMO

The therapeutic potential of human mesenchymal stromal cells (h-MSC) is dependent on the viability and secretory capacity of cells both modulated by the culture environment. Our previous studies introduced heparin and collagen I (HEP/COL) alternating stacked layers as a potential substrate to enhance the secretion of immunosuppressive factors of h-MSCs. Herein, we examined the impact of HEP/COL multilayers on the growth, morphology, and secretome of bone marrow and adipose-derived h-MSCs. The physicochemical properties and stability of the HEP/COL coatings were confirmed at 0 and 30 days. Cell growth was examined using cell culture media supplemented with 2 and 10% serum for 5 days. Results showed that HEP/COL multilayers supported h-MSC growth in 2% serum at levels equivalent to 10% serum. COL and HEP as single component coatings had limited impact on cell growth. Senescent studies performed over three sequential passages showed that HEP/COL multilayers did not impair the replicative capacity of h-MSCs. Examination of 27 cytokines showed significant enhancements in eight factors, including intracellular indoleamine 2, 3-dioxygenase, on HEP/COL multilayers when stimulated with interferon-gamma (IFN-γ). Image-based analysis of cell micrographs showed that serum influences h-MSC morphology; however, HEP-ended multilayers generated distinct morphological changes in response to IFN-γ, suggesting an optical detectable assessment of h-MSCs immunosuppressive potency. This study supports HEP/COL multilayers as a culture substrate for undifferentiated h-MSCs cultured in reduced serum conditions.


Assuntos
Anticoagulantes/química , Materiais Revestidos Biocompatíveis , Colágeno/química , Heparina/química , Interferon gama/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Secretoma , Adipócitos , Animais , Células da Medula Óssea , Bovinos , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Humanos , Imunossupressores/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura
4.
J Biomed Mater Res A ; 104(2): 419-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26422588

RESUMO

Degeneration of intervertebral discs (IVDs) results in an overall alteration of the biomechanics of the spinal column and becomes a major cause of low back pain. In this study, an injectable hydrogel composite is fabricated and characterized as a potential scaffold for the treatment of degenerated IVDs. Crosslinking of type II collagen-hyaluronic acid (HA) hydrogel with 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide (EDC) increases the gel stability against collagenase digestion and reduces water uptake in comparison with non-crosslinked gel. Cell viability assay exhibits the proliferation of human nucleus pulposus (HNP) cells in hydrogels. The cells in non-crosslinked gel and the gel crosslinked with a low concentration of EDC (0.1 mM) show superior cell viability and morphology compared with cells in gels crosslinked with higher concentration of EDC. Quantitative PCR assay demonstrates the gene expression of extracellular matrix (ECM) by cells cultured in the gels. The expression of ECM genes by HNP cells in the gels demonstrated the phenotypic change of the cells. This study suggests that the type II collagen-HA hydrogel and crosslinked hydrogel (0.1 mM EDC) are permissive matrix for the growth of HNP cells and can be potentially applied in NP repair.


Assuntos
Colágeno Tipo II , Ácido Hialurônico , Degeneração do Disco Intervertebral/terapia , Disco Intervertebral/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo II/química , Colágeno Tipo II/farmacologia , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis , Disco Intervertebral/patologia
5.
Stem Cell Res Ther ; 5(4): 91, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25157690

RESUMO

The loss of neurons and degeneration of axons after spinal cord injury result in the loss of sensory and motor functions. A bridging biomaterial construct that allows the axons to grow through has been investigated for the repair of injured spinal cord. Due to the hostility of the microenvironment in the lesion, multiple conditions need to be fulfilled to achieve improved functional recovery. A scaffold has been applied to bridge the gap of the lesion as contact guidance for axonal growth and to act as a vehicle to deliver stem cells in order to modify the microenvironment. Stem cells may improve functional recovery of the injured spinal cord by providing trophic support or directly replacing neurons and their support cells. Neural stem cells and mesenchymal stem cells have been seeded into biomaterial scaffolds and investigated for spinal cord regeneration. Both natural and synthetic biomaterials have increased stem cell survival in vivo by providing the cells with a controlled microenvironment in which cell growth and differentiation are facilitated. This optimal multi‒disciplinary approach of combining biomaterials, stem cells, and biomolecules offers a promising treatment for the injured spinal cord.


Assuntos
Axônios/fisiologia , Regeneração Nervosa , Traumatismos da Medula Espinal/terapia , Materiais Biocompatíveis/química , Diferenciação Celular , Microambiente Celular , Células-Tronco Mesenquimais , Células-Tronco Neurais , Recuperação de Função Fisiológica , Alicerces Teciduais , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA