RESUMO
Reducing premature mortality associated with age-related chronic diseases, such as cancer and cardiovascular disease, is an urgent priority. We report early results using genomics in combination with advanced imaging and other clinical testing to proactively screen for age-related chronic disease risk among adults. We enrolled active, symptom-free adults in a study of screening for age-related chronic diseases associated with premature mortality. In addition to personal and family medical history and other clinical testing, we obtained whole-genome sequencing (WGS), noncontrast whole-body MRI, dual-energy X-ray absorptiometry (DXA), global metabolomics, a new blood test for prediabetes (Quantose IR), echocardiography (ECHO), ECG, and cardiac rhythm monitoring to identify age-related chronic disease risks. Precision medicine screening using WGS and advanced imaging along with other testing among active, symptom-free adults identified a broad set of complementary age-related chronic disease risks associated with premature mortality and strengthened WGS variant interpretation. This and other similarly designed screening approaches anchored by WGS and advanced imaging may have the potential to extend healthy life among active adults through improved prevention and early detection of age-related chronic diseases (and their risk factors) associated with premature mortality.
Assuntos
Doença/genética , Predisposição Genética para Doença , Processamento de Imagem Assistida por Computador/métodos , Mutação , Medicina de Precisão/métodos , Sequenciamento Completo do Genoma/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Doença/classificação , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/patologia , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Medição de Risco , Análise de Sequência de RNA , Adulto JovemRESUMO
Cdc14 phosphatase regulates multiple events during anaphase and is essential for mitotic exit in budding yeast. Cdc14 is regulated in both a spatial and temporal manner. It is sequestered in the nucleolus for most of the cell cycle by the nucleolar protein Net1 and is released into the nucleus and cytoplasm during anaphase. To identify novel binding partners of Cdc14, we used affinity purification of Cdc14 and mass spectrometric analysis of interacting proteins from strains in which Cdc14 localization or catalytic activity was altered. To alter Cdc14 localization, we used a strain deleted for NET1, which causes full release of Cdc14 from the nucleolus. To alter Cdc14 activity, we generated mutations in the active site of Cdc14 (C283S or D253A), which allow binding of substrates, but not dephosphorylation, by Cdc14. Using this strategy, we identified new interactors of Cdc14, including multiple proteins involved in mitotic events. A subset of these proteins displayed increased affinity for catalytically inactive mutants of Cdc14 compared with the wild-type version, suggesting they are likely substrates of Cdc14. We have also shown that several of the novel Cdc14-interacting proteins, including Kar9 (a protein that orients the mitotic spindle) and Bni1 and Bnr1 (formins that nucleate actin cables and may be important for actomyosin ring contraction) are specifically dephosphorylated by Cdc14 in vitro and in vivo. Our findings suggest the dephosphorylation of the formins may be important for their observed localization change during exit from mitosis and indicate that Cdc14 targets proteins involved in wide-ranging mitotic events.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Mitose/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação/fisiologia , Transporte Proteico/fisiologia , Proteínas Tirosina Fosfatases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Cyclin-dependent kinase (Cdk) both promotes mitotic entry (spindle assembly and anaphase) and inhibits mitotic exit (spindle disassembly and cytokinesis), leading to an elegant quantitative hypothesis that a single cyclin oscillation can function as a ratchet to order these events. This ratchet is at the core of a published ODE model for the yeast cell cycle. However, the ratchet model requires appropriate cyclin dose-response thresholds. Here, we test the inhibition of mitotic exit in budding yeast using graded levels of stable mitotic cyclin (Clb2). In opposition to the ratchet model, stable levels of Clb2 introduced dose-dependent delays, rather than hard thresholds, that varied by mitotic exit event. The ensuing cell cycle was highly abnormal, suggesting a novel reason for cyclin degradation. Cdc14 phosphatase antagonizes Clb2-Cdk, and Cdc14 is released from inhibitory nucleolar sequestration independently of stable Clb2. Thus, Cdc14/Clb2 balance may be the appropriate variable for mitotic regulation. Although our results are inconsistent with the aforementioned ODE model, revision of the model to allow Cdc14/Clb2 balance to control mitotic exit corrects these discrepancies, providing theoretical support for our conclusions.