Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proc Biol Sci ; 291(2025): 20240654, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889789

RESUMO

The morphology and biomechanics of infant crania undergo significant changes between the pre- and post-weaning phases due to increasing loading of the masticatory system. The aims of this study were to characterize the changes in muscle forces, bite forces and the pattern of mechanical strain and stress arising from the aforementioned forces across crania in the first 48 months of life using imaging and finite element methods. A total of 51 head computed tomography scans of normal individuals were collected and analysed from a larger database of 217 individuals. The estimated mean muscle forces of temporalis, masseter and medial pterygoid increase from 30.9 to 87.0 N, 25.6 to 69.6 N and 23.1 to 58.9 N, respectively (0-48 months). Maximum bite force increases from 90.5 to 184.2 N (3-48 months). There is a change in the pattern of strain and stress from the calvaria to the face during postnatal development. Overall, this study highlights the changes in the mechanics of the craniofacial system during normal development. It further raises questions as to how and what level of changes in the mechanical forces during the development can alter the morphology of the craniofacial system.


Assuntos
Força de Mordida , Crânio , Lactente , Humanos , Fenômenos Biomecânicos , Crânio/anatomia & histologia , Pré-Escolar , Tomografia Computadorizada por Raios X , Análise de Elementos Finitos , Feminino , Masculino , Mastigação , Adaptação Fisiológica , Recém-Nascido , Estresse Mecânico , Músculos da Mastigação/fisiologia
2.
J Anat ; 243(6): 982-996, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37492024

RESUMO

Flatfish (Pleuronectiformes) vertebrae are difficult to identify to species due to the lack of diagnostic features. This has resulted in a lack of understanding of the species abundances across archaeological sites, hindering interpretations of historical fisheries in the North Sea area. We use a new approach, utilising a combined 2D landmark-based geometric morphometric analysis as an objective and non-destructive method for species identification of flatfish vertebrae from the North Sea area. Modern specimens were used as a reference to describe the morphological variation between taxa using principal component analysis (PCA) and to trial an automated classification using linear discriminant analysis. Although there is limited distinction between taxa using PCAs, the classification shows high accuracies, indicating that flatfish species identifications using geometric morphometrics are possible. Bone samples (n = 105) from two archaeological sites in the United Kingdom and France were analysed using this approach and their identifications were verified using collagen peptide mass fingerprinting. The success rate of species identification was usually less than 50%, indicating that this technique has limited applicability due to preservation/fragmentation of archaeological fish bone. Nonetheless, this could prove a valuable tool for modern and non-fragmented samples. Furthermore, the technique applied in this study can be easily adapted to work on other landmark datasets.


Assuntos
Linguados , Animais , França , Análise de Componente Principal , Colágeno , Coluna Vertebral
3.
J Anat ; 242(6): 1172-1183, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36774197

RESUMO

The use of non-destructive approaches for digital acquisition (e.g. computerised tomography-CT) allows detailed qualitative and quantitative study of internal structures of skeletal material. Here, we present a new R-based software tool, Icex, applicable to the study of the sizes and shapes of skeletal cavities and fossae in 3D digital images. Traditional methods of volume extraction involve the manual labelling (i.e. segmentation) of the areas of interest on each section of the image stack. This is time-consuming, error-prone and challenging to apply to complex cavities. Icex facilitates rapid quantification of such structures. We describe and detail its application to the isolation and calculation of volumes of various cranial cavities. The R tool is used here to automatically extract the orbital volumes, the paranasal sinuses, the nasal cavity and the upper oral volumes, based on the coordinates of 18 cranial anatomical points used to define their limits, from 3D cranial surface meshes obtained by segmenting CT scans. Icex includes an algorithm (Icv) for the calculation of volumes by defining a 3D convex hull of the extracted cavity. We demonstrate the use of Icex on an ontogenetic sample (0-19 years) of modern humans and on the fossil hominin crania Kabwe (Broken Hill) 1, Gibraltar (Forbes' Quarry) and Guattari 1. We also test the tool on three species of non-human primates. In the modern human subsample, Icex allowed us to perform a preliminary analysis on the absolute and relative expansion of cranial sinuses and pneumatisations during growth. The performance of Icex, applied to diverse crania, shows the potential for an extensive evaluation of the developmental and/or evolutionary significance of hollow cranial structures. Furthermore, being open source, Icex is a fully customisable tool, easily applicable to other taxa and skeletal regions.


Assuntos
Seios Paranasais , Crânio , Animais , Crânio/diagnóstico por imagem , Primatas , Tomografia Computadorizada por Raios X , Cavidade Nasal
4.
Am J Phys Anthropol ; 176(3): 486-503, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34338313

RESUMO

OBJECTIVES: Craniofacial morphology (CFM) is often used to address questions about the biological affinities of the earliest Americans, or Paleoindians, but resolution is complicated in part by a lack of well-preserved crania. The Wilson-Leonard 2 (WL-2) Paleoindian skull from Texas has never been fully analyzed because it is crushed and cannot be physically reconstructed. This study employs a digital restoration for comprehensive assessment and analysis of WL-2. MATERIALS AND METHODS: High-resolution CT data and geometric morphometrics are used to restore the WL-2 skull and analyze its morphology using 65 craniometric measurements acquired on the restoration. These data allow for a full morphological description and multivariate (Mahalanobis Distance and Principal Component) comparisons to other Paleoindians and recent populations. RESULTS: WL-2 has a long, narrow braincase, and a short, modestly prognathic face. Compared with other Paleoindians, she is individually similar to several skulls from Brazil, but aligns most closely with pooled samples from the US and Mexico. WL-2 is most similar to recent populations from Europe, Asia, and the Americas, and markedly different to those from Africa and Australia. DISCUSSION: The overall morphology of WL-2 and her association with Asians and Europeans align well with trends identified in other CFM analyses. Her affinity to recent Amerindians contrasts with the findings of many previous CFM studies, but is seemingly consistent with molecular analyses suggesting a close relationship between some Paleoindians and modern American Indians. This study demonstrates the potential for using digital anthropological methods to study other Paleoindian crania whose data value is limited by physical destruction and/or deformation.


Assuntos
Crânio , Ásia , Brasil , Cefalometria , Feminino , Humanos , Texas , Estados Unidos
5.
Am J Phys Anthropol ; 174(1): 129-139, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32865237

RESUMO

OBJECTIVES: This study describes and demonstrates the functionalities and application of a new R package, morphomap, designed to extract shape information as semilandmarks in multiple sections, build cortical thickness maps, and calculate biomechanical parameters on long bones. METHODS: morphomap creates, from a single input (an oriented 3D mesh representing the long bone surface), multiple evenly spaced virtual sections. morphomap then directly and rapidly computes morphometric and biomechanical parameters on each of these sections. The R package comprises three modules: (a) to place semilandmarks on the inner and outer outlines of each section, (b) to extract cortical thicknesses for 2D and 3D morphometric mapping, and (c) to compute cross-sectional geometry. RESULTS: In this article, we apply morphomap to femora from Homo sapiens and Pan troglodytes to demonstrate its utility and show its typical outputs. morphomap greatly facilitates rapid analysis and functional interpretation of long bone form and should prove a valuable addition to the osteoarcheological analysis software toolkit. CONCLUSIONS: Long bone loading history is commonly retrodicted by calculating biomechanical parameters such as area moments of inertia, analyzing external shape and measuring cortical thickness. morphomap is a software written in the open source R environment, it integrates the main methodological approaches (geometric morphometrics, cortical morphometric maps, and cross-sectional geometry) used to parametrize long bones.


Assuntos
Diáfises/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Imageamento Tridimensional/métodos , Software , Anatomia Transversal/métodos , Animais , Antropologia Física , Diáfises/anatomia & histologia , Fêmur/anatomia & histologia , Humanos , Pan troglodytes
6.
Am J Phys Anthropol ; 173(4): 643-654, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33025582

RESUMO

OBJECTIVES: We analyzed the main anatomical traits found in the human frontal bone by using a geometric morphometric approach. The objectives of this study are to explore how the frontal bone morphology varies between the sexes and to detect which part of the frontal bone are sexually dimorphic. MATERIALS AND METHODS: The sample is composed of 161 skulls of European and North American individuals of known sex. For each cranium, we collected 3D landmarks and semilandmarks on the frontal bone, to examine the entire morphology and separate modules (frontal squama, supraorbital ridges, glabellar region, temporal lines, and mid-sagittal profile). We used Procrustes ANOVAs and LDAs (linear discriminant analyses) to evaluate the relation between frontal bone morphology and sexual dimorphism and to calculate precision and accuracy in the classification of sex. RESULTS: All the frontal bone traits are influenced by sexual dimorphism, though each in a different manner. Variation in shape and size differs between the sexes, and this study confirmed that the supraorbital ridges and glabella are the most important regions for sex determination, although there is no covariation between them. The variable size does not contribute significantly to the discrimination between sexes. Thanks to a geometric morphometric analysis, it was found that the size variable is not an important element for the determination of sex in the frontal bone. CONCLUSION: The usage of geometric morphometrics in analyzing the frontal bone has led to new knowledge on the morphological variations due to sexual dimorphism. The proposed protocol permits to quantify morphological covariation between modules, to calculate the shape variations related to sexual dimorphism including or omitting the variable size.


Assuntos
Cefalometria/métodos , Osso Frontal/anatomia & histologia , Caracteres Sexuais , Adulto , Análise Discriminante , Feminino , Antropologia Forense , Humanos , Masculino , Determinação do Sexo pelo Esqueleto
7.
Am J Phys Anthropol ; 172(3): 511-515, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32187657

RESUMO

OBJECTIVES: Reproducing cranial endocasts is a major goal of researchers interested in vertebrate brain evolution. We present a new R software, named endomaker, which allows the automatic extraction of endocasts from skull meshes along with the calculation of its volume. MATERIALS AND METHODS: We applied endomaker on non-primate and primate skulls including the Australopithecus africanus specimen Sts-5. RESULTS: We proved endomaker is faster, more feature-rich and possibly more accurate than competing software. DISCUSSION: Endomaker is the only available program endowed with the possibility to process an entire mesh directory straight away, promising to expand the scope and phylogenetic breadth of comparative studies of brain evolution.


Assuntos
Algoritmos , Cefalometria/métodos , Imageamento Tridimensional/métodos , Crânio , Animais , Antropologia Física , Evolução Biológica , Aves , Encéfalo/anatomia & histologia , Cães , Golfinhos , Fósseis , Hominidae , Humanos , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem
8.
Am J Primatol ; 82(9): e23170, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32639073

RESUMO

The position (FMP) and orientation (FMO) of the foramen magnum have been used as proxies for locomotion and posture in extant and extinct primates. Several indices have been designed to quantify FMP and FMO but their application has led to conflicting results. Here, we test six widely used indices and two approaches (univariate and multivariate) for their capability to discriminate between postural and locomotor types in extant primates and fossil hominins. We then look at the locomotion of australopithecines and Homo on the base of these new findings. The following measurements are used: the opisthocranion-prosthion (OP-PR) and the opisthocranion-glabella (OP-GL) indices, the basion-biporion (BA-BP) and basion-bicarotid chords, the foramen magnum angle (FMA), and the basion-sphenoccipital ratio. After exploring the indices variability using principal component analysis, pairwise comparisons are performed to test for the association between each index and the locomotor and postural habits. Cranial size and phylogeny are taken into account. Our analysis indicates that none of the indices or approaches provides complete discrimination across locomotor and postural categories, although some differences are highlighted. FMA and BA-BP distinguish respectively obligate and facultative bipeds from all other groups. For what concerns posture, orthogrades and pronogrades differ with respects to OP-PR, OP-GL, and FMA. Although the multivariate approach seems to have some discrimination power, the results are most likely driven by facial and neurocranial variability embedded in some of the indices. These results demonstrate that indices relying on the anteroposterior positioning of the foramen may not be appropriate proxies for locomotion among primates. The assumptions about locomotor and postural habits in fossil hominins based on foramen magnum indices should be revised in light of these new findings.


Assuntos
Forame Magno/anatomia & histologia , Locomoção , Postura , Primatas/anatomia & histologia , Animais , Forame Magno/fisiologia , Fósseis , Hominidae/anatomia & histologia , Humanos , Filogenia , Primatas/fisiologia , Crânio/anatomia & histologia
9.
Adv Exp Med Biol ; 1171: 73-83, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31823241

RESUMO

Bones contain spaces within them. The extraction and the analysis of those cavities are crucial in the study of bone tissue function and can inform about pathologies or past traumatic events. The use of medical imaging techniques allows a non-invasive visualisation of skeletal cavities opening a new frontier in medical inspection and diagnosis. Here, we report the application of a new mesh-based approach for the isolation of skeletal cavities of different size and geometrical structure. We apply a mesh-based approach to extract (i) the main virtual cavities inside the human skull, (ii) a complete human endocast, (iii) the inner vasculature of the malleus bone and (iv) the medullary of a human femur. The detailed description of the mesh-based isolation method and its pioneristic application to four different case-studies show the potential of this approach in medical visualisation.


Assuntos
Anatomia , Osso e Ossos , Imageamento Tridimensional , Anatomia/métodos , Anatomia/tendências , Osso e Ossos/anatomia & histologia , Visualização de Dados , Humanos
10.
Am J Phys Anthropol ; 166(2): 473-480, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29446075

RESUMO

OBJECTIVE: Smoothing and decimation filters are commonly used to restore the realistic appearance of virtual biological specimens, but they can cause a loss of topological information of unknown extent. In this study, we analyzed the effect of smoothing and decimation on a 3D mesh to highlight the consequences of an inappropriate use of these filters. MATERIALS AND METHODS: Topological noise was simulated on four anatomical regions of the virtual reconstruction of an orangutan cranium. Sequential levels of smoothing and decimation were applied, and their effects were analyzed on the overall topology of the 3D mesh and on linear and volumetric measurements. RESULTS: Different smoothing algorithms affected mesh topology and measurements differently, although the influence on the latter was generally low. Decimation always produced detrimental effects on both topology and measurements. The application of smoothing and decimation, both separate and combined, is capable of recovering topological information. CONCLUSION: Based on the results, objective guidelines are provided to minimize information loss when using smoothing and decimation on 3D meshes.


Assuntos
Antropometria/métodos , Imageamento Tridimensional/métodos , Algoritmos , Animais , Antropologia Física , Pongo/anatomia & histologia , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Propriedades de Superfície , Realidade Virtual
11.
Am J Phys Anthropol ; 167(1): 84-96, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29737530

RESUMO

OBJECTIVES: Although the evolution of the hominin masticatory apparatus has been linked to diet and food processing, the physical connection between neurocranium and lower jaw suggests a role of encephalization in the trend of dental and mandibular reduction. Here, the hypothesis that tooth size and mandibular robusticity are influenced by morphological changes in the neurocranium was tested. MATERIALS AND METHODS: Three-dimensional landmarks, alveolar lengths, and mandibular robusticity data were recorded on a sample of chimpanzee and human skulls. The morphological integration between the neurocranium and the lower jaw was analyzed by means of Singular Warps Analysis. Redundancy Analysis was performed to understand if the pattern of neuromandibular integration affects tooth size and mandibular robusticity. RESULTS: There is significant morphological covariation between neurocranium and lower jaw in both chimpanzees and humans. In humans, changes in the temporal fossa seem to produce alterations of the relative orientation of jaw parts, while the influence of similar neurocranial changes in chimpanzees are more localized. In both species, postcanine alveolar lengths and mandibular robusticity are associated with shape changes of the temporal fossa. CONCLUSIONS: The results of this study support the hypothesis that the neurocranium is able to affect the evolution and development of the lower jaw, although most likely through functional integration of mandible, teeth, and muscles within the masticatory apparatus. This study highlights the relative influence of structural constraints and adaptive factors in the evolution of the human skull.


Assuntos
Evolução Biológica , Mandíbula/anatomia & histologia , Crânio/anatomia & histologia , Dente/anatomia & histologia , Adulto , Animais , Antropologia Física , Cefalometria , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pan troglodytes/anatomia & histologia
12.
Am J Phys Anthropol ; 166(4): 979-986, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29681055

RESUMO

OBJECTIVES: We present two new automatic tools, developed under the R environment, to reproduce the internal and external structures of bony elements. The first method, Computer-Aided Laser Scanner Emulator (CA-LSE), provides the reconstruction of the external portions of a 3D mesh by simulating the action of a laser scanner. The second method, Automatic Segmentation Tool for 3D objects (AST-3D), performs the digital reconstruction of anatomical cavities. MATERIALS AND METHODS: We present the application of CA-LSE and AST-3D methods to different anatomical remains, highly variable in terms of shape, size and structure: a modern human skull, a malleus bone, and a Neanderthal deciduous tooth. Both methods are developed in the R environment and embedded in the packages "Arothron" and "Morpho," where both the codes and the data are fully available. RESULTS: The application of CA-LSE and AST-3D allows the isolation and manipulation of the internal and external components of the 3D virtual representation of complex bony elements. In particular, we present the output of the four case studies: a complete modern human endocast and the right maxillary sinus, the dental pulp of the Neanderthal tooth and the inner network of blood vessels of the malleus. DISCUSSION: Both methods demonstrated to be much faster, cheaper, and more accurate than other conventional approaches. The tools we presented are available as add-ons in existing software within the R platform. Because of ease of application, and unrestrained availability of the methods proposed, these tools can be widely used by paleoanthropologists, paleontologists and anatomists.


Assuntos
Antropologia Física/métodos , Osso e Ossos/anatomia & histologia , Osso e Ossos/diagnóstico por imagem , Fósseis , Processamento de Imagem Assistida por Computador/métodos , Humanos , Imageamento Tridimensional , Lasers
13.
Am J Primatol ; 79(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29095513

RESUMO

The evolutionary relationship between the base and face of the cranium is a major topic of interest in primatology. Such areas of the skull possibly respond to different selective pressures. Yet, they are often said to be tightly integrated. In this paper, we analyzed shape variability in the cranial base and the facial complex in Cercopithecoidea and Hominoidea. We used a landmark-based approach to single out the effects of size (evolutionary allometry), morphological integration, modularity, and phylogeny (under Brownian motion) on skull shape variability. Our results demonstrate that the cranial base and the facial complex exhibit different responses to different factors, which produces a little degree of morphological integration between them. Facial shape variation appears primarily influenced by body size and sexual dimorphism, whereas the cranial base is mostly influenced by functional factors. The different adaptations affecting the two modules suggest they are best studied as separate and independent units, and that-at least when dealing with Catarrhines-caution must be posed with the notion of strong cranial integration that is commonly invoked for the evolution of their skull shape.


Assuntos
Evolução Biológica , Cercopithecidae/anatomia & histologia , Face/anatomia & histologia , Hominidae/anatomia & histologia , Base do Crânio/anatomia & histologia , Animais , Filogenia
14.
J Hum Evol ; 82: 88-94, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25805042

RESUMO

In 1993, a fossil hominin skeleton was discovered in the karst caves of Lamalunga, near Altamura, in southern Italy. Despite the fact that this specimen represents one of the most extraordinary hominin specimens ever found in Europe, for the last two decades our knowledge of it has been based purely on the documented on-site observations. Recently, the retrieval from the cave of a fragment of bone (part of the right scapula) allowed the first dating of the individual, the quantitative analysis of a diagnostic morphological feature, and a preliminary paleogenetic characterization of this hominin skeleton from Altamura. Overall, the results concur in indicating that it belongs to the hypodigm of Homo neanderthalensis, with some phenetic peculiarities that appear consistent with a chronology ranging from 172 ± 15 ka to 130.1 ± 1.9 ka. Thus, the skeleton from Altamura represents the most ancient Neanderthal from which endogenous DNA has ever been extracted.


Assuntos
Cavernas , Fósseis , Homem de Neandertal , Paleontologia/métodos , Esqueleto , Animais , Sequência de Bases , DNA/análise , História Antiga , Itália , Dados de Sequência Molecular , Filogenia , Escápula/química , Esqueleto/química
15.
Sci Rep ; 14(1): 6024, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472259

RESUMO

The peopling of Europe during the Middle Pleistocene is a debated topic among paleoanthropologists. Some authors suggest the coexistence of multiple human lineages in this period, while others propose a single evolving lineage from Homo heidelbergensis to Homo neanderthalensis. The recent reassessment of the stratigraphy at the Sedia del Diavolo (SdD) site (Latium, Italy), now dated to the beginning of marine isotope stage (MIS) 8, calls for a revision of the human fossils from the site. In this paper, we present the morphometric, biomechanical and palaeopathological study of the second right metatarsal SdD2, to both re-evaluate its taxonomical affinities and possibly determine the levels of physical activity experienced by the individual during lifetime. Results demonstrate the persistence of archaic features in SdD2 suggesting new insights into the technology and hunting strategies adopted by Homo between MIS 9 and MIS 8.


Assuntos
Hominidae , Ossos do Metatarso , Homem de Neandertal , Animais , Humanos , Cidade de Roma , Itália , Fósseis , Evolução Biológica
16.
Animals (Basel) ; 13(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36766273

RESUMO

In landmark-based analyses of size and shape variation and covariation among biological structures, regions lacking clearly identifiable homologous landmarks are commonly described by semilandmarks. Different algorithms may be used to apply semilandmarks, but little is known about the consequences of analytical results. Here, we assess how different approaches and semilandmarking densities affect the estimates and visualisations of mean and allometrically scaled surfaces. The performance of three landmark-driven semilandmarking approaches is assessed using two different surface mesh datasets with different degrees of variation and complexity: adult human head and ape cranial surfaces. Surfaces fitted to estimates of the mean and allometrically scaled landmark and semilandmark configurations arising from geometric morphometric analyses of these datasets are compared between semilandmarking approaches and different densities, as well as with those from warping to landmarks alone. We find that estimates of surface mesh shape (i.e., after re-semilandmarking and then re-warping) made with varying numbers of semilandmarks are generally consistent, while the warping of surfaces using landmarks alone yields surfaces that can be quite different to those based on semilandmarks, depending on landmark coverage and choice of template surface for warping. The extent to which these differences are important depends on the particular study context and aims.

17.
Animals (Basel) ; 13(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37048435

RESUMO

Often, few landmarks can be reliably identified in analyses of form variation and covariation. Thus, 'semilandmarking' algorithms have increasingly been applied to surfaces and curves. However, the locations of semilandmarks depend on the investigator's choice of algorithm and their density. In consequence, to the extent that different semilandmarking approaches and densities result in different locations of semilandmarks, they can be expected to yield different results concerning patterns of variation and co-variation. The extent of such differences due to methodology is, as yet, unclear and often ignored. In this study, the performance of three landmark-driven semilandmarking approaches is assessed, using two different surface mesh datasets (ape crania and human heads) with different degrees of variation and complexity, by comparing the results of morphometric analyses. These approaches produce different semilandmark locations, which, in turn, lead to differences in statistical results, although the non-rigid semilandmarking approaches are consistent. Morphometric analyses using semilandmarks must be interpreted with due caution, recognising that error is inevitable and that results are approximations. Further work is needed to investigate the effects of using different landmark and semilandmark templates and to understand the limitations and advantages of different semilandmarking approaches.

18.
Sci Rep ; 13(1): 9641, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316540

RESUMO

Knowledge of human craniofacial growth (increase in size) and development (change in shape) is important in the clinical treatment of a range of conditions that affects it. This study uses an extensive collection of clinical CT scans to investigate craniofacial growth and development over the first 48 months of life, detail how the cranium changes in form (size and shape) in each sex and how these changes are associated with the growth and development of various soft tissues such as the brain, eyes and tongue and the expansion of the nasal cavity. This is achieved through multivariate analyses of cranial form based on 3D landmarks and semi-landmarks and by analyses of linear dimensions, and cranial volumes. The results highlight accelerations and decelerations in cranial form changes throughout early childhood. They show that from 0 to 12 months, the cranium undergoes greater changes in form than from 12 to 48 months. However, in terms of the development of overall cranial shape, there is no significant sexual dimorphism in the age range considered in this study. In consequence a single model of human craniofacial growth and development is presented for future studies to examine the physio-mechanical interactions of the craniofacial growth.


Assuntos
Aceleração , Crânio , Humanos , Pré-Escolar , Crânio/diagnóstico por imagem , Encéfalo , Olho , Crescimento e Desenvolvimento
19.
Sci Rep ; 13(1): 16847, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803023

RESUMO

The study of sexual dimorphism in human crania has important applications in the fields of human evolution and human osteology. Current, the identification of sex from cranial morphology relies on manual visual inspection of identifiable anatomical features, which can lead to bias due to user's expertise. We developed a landmark-based approach to automatically map the sexual dimorphism signal on the human cranium. We used a sex-known sample of 228 individuals from different geographical locations to identify which cranial regions are most sexually dimorphic taking into account shape, form and size. Our results, which align with standard protocols, show that glabellar and supraciliary regions, the mastoid process and the nasal region are the most sexually dimorphic traits (with an accuracy of 73%). The accuracy increased to 77% if they were considered together. Surprisingly the occipital external protuberance resulted to be not sexually dimorphic but mainly related to variations in size. Our approach here applied could be expanded to map other variable signals on skeletal morphology.


Assuntos
Caracteres Sexuais , Crânio , Humanos , Crânio/anatomia & histologia , Processo Mastoide , Nariz , Comportamento Sexual , Osso Occipital
20.
Nat Ecol Evol ; 7(1): 42-50, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36604552

RESUMO

There is controversy around the mechanisms that guided the change in brain shape during the evolution of modern humans. It has long been held that different cortical areas evolved independently from each other to develop their unique functional specializations. However, some recent studies suggest that high integration between different cortical areas could facilitate the emergence of equally extreme, highly specialized brain functions. Here, we analyse the evolution of brain shape in primates using three-dimensional geometric morphometrics of endocasts. We aim to determine, firstly, whether modern humans present unique developmental patterns of covariation between brain cortical areas; and secondly, whether hominins experienced unusually high rates of evolution in brain covariation as compared to other primates. On the basis of analyses including modern humans and other extant great apes at different developmental stages, we first demonstrate that, unlike our closest living relatives, Homo sapiens retain high levels of covariation between cortical areas into adulthood. Among the other great apes, high levels of covariation are only found in immature individuals. Secondly, at the macro-evolutionary level, our analysis of 400 endocasts, representing 148 extant primate species and 6 fossil hominins, shows that strong covariation between different areas of the brain in H. sapiens and Homo neanderthalensis evolved under distinctly higher evolutionary rates than in any other primate, suggesting that natural selection favoured a greatly integrated brain in both species. These results hold when extinct species are excluded and allometric effects are accounted for. Our findings demonstrate that high covariation in the brain may have played a critical role in the evolution of unique cognitive capacities and complex behaviours in both modern humans and Neanderthals.


Assuntos
Hominidae , Homem de Neandertal , Animais , Humanos , Primatas , Encéfalo , Cabeça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA