Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(3): e1010944, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36913405

RESUMO

We introduce a self-describing serialized format for bulk biomedical data called the Portable Format for Biomedical (PFB) data. The Portable Format for Biomedical data is based upon Avro and encapsulates a data model, a data dictionary, the data itself, and pointers to third party controlled vocabularies. In general, each data element in the data dictionary is associated with a third party controlled vocabulary to make it easier for applications to harmonize two or more PFB files. We also introduce an open source software development kit (SDK) called PyPFB for creating, exploring and modifying PFB files. We describe experimental studies showing the performance improvements when importing and exporting bulk biomedical data in the PFB format versus using JSON and SQL formats.


Assuntos
Software , Vocabulário Controlado , Registros
2.
Artigo em Inglês | MEDLINE | ID: mdl-38050021

RESUMO

Veterans are at an increased risk for prostate cancer, a disease with extraordinary clinical and molecular heterogeneity, compared with the general population. However, little is known about the underlying molecular heterogeneity within the veteran population and its impact on patient management and treatment. Using clinical and targeted tumor sequencing data from the National Veterans Affairs health system, we conducted a retrospective cohort study on 45 patients with advanced prostate cancer in the Veterans Precision Oncology Data Commons (VPODC), most of whom were metastatic castration-resistant. We characterized the mutational burden in this cohort and conducted unsupervised clustering analysis to stratify patients by molecular alterations. Veterans with prostate cancer exhibited a mutational landscape broadly similar to prior studies, including KMT2A and NOTCH1 mutations associated with neuroendocrine prostate cancer phenotype, previously reported to be enriched in veterans. We also identified several potential novel mutations in PTEN, MSH6, VHL, SMO, and ABL1 Hierarchical clustering analysis revealed two subgroups containing therapeutically targetable molecular features with novel mutational signatures distinct from those reported in the Catalogue of Somatic Mutations in Cancer database. The clustering approach presented in this study can potentially be used to clinically stratify patients based on their distinct mutational profiles and identify actionable somatic mutations for precision oncology.


Assuntos
Neoplasias da Próstata , Veteranos , Masculino , Humanos , Estudos Retrospectivos , Medicina de Precisão , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Oncologia , Mutação
3.
Patterns (N Y) ; 1(6): 100083, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-33205130

RESUMO

The Veterans Affairs Precision Oncology Data Repository (VA-PODR) is a large, nationwide repository of de-identified data on patients diagnosed with cancer at the Department of Veterans Affairs (VA). Data include longitudinal clinical data from the VA's nationwide electronic health record system and the VA Central Cancer Registry, targeted tumor sequencing data, and medical imaging data including computed tomography (CT) scans and pathology slides. A subset of the repository is available at the Genomic Data Commons (GDC) and The Cancer Imaging Archive (TCIA), and the full repository is available through the Veterans Precision Oncology Data Commons (VPODC). By releasing this de-identified dataset, we aim to advance Veterans' health care through enabling translational research on the Veteran population by a wide variety of researchers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA