RESUMO
Specimens stored in museum collections represent a crucial source of morphological and genetic information, notably for taxonomically problematic groups and extinct taxa. Although fluid-preserved specimens of groups such as teleosts may constitute an almost infinite source of DNA, few ancient DNA protocols have been applied to such material. In this study, we describe a non-invasive Guanidine-based (GuSCN) ancient DNA extraction protocol adapted to fluid-preserved specimens that we use to re-assess the systematics of the genus Orestias (Cyprinodontidae: Teleostei). The latter regroups pupfishes endemic to the inter-Andean basin that have been considered as a 'species flock', and for which the morphology-based taxonomic delimitations have been hotly debated. We extracted DNA from the type specimens of Orestias kept at the Muséum National d'Histoire Naturelle of Paris, France, including the extinct species O. cuvieri. We then built the first molecular (control region [CR] and rhodopsin [RH]) phylogeny including historical and recently collected representatives of all the Orestias complexes as recognized by Parenti (1984a): agassizii, cuvieri, gilsoni and mulleri. Our ancient DNA extraction protocol was validated after PCR amplification through an approach based on fragment-by-fragment chimera detection. After optimization, we were able to amplify < 200 bp fragments from both mitochondrial and nuclear DNA (CR and RH, respectively) from probably formalin-fixed type specimens bathed entirely in the extraction fluid. Most of the individuals exhibited few modifications of their external structures after GuSCN bath. Our approach combining type material and 'fresh' specimens allowed us to taxonomically delineate four clades recovered from the well-resolved CR tree into four redefined complexes: agassizii (sensu stricto, i.e. excluding luteus-like species), luteus, cuvieri and gilsoni. The mulleri complex is polyphyletic. Our phylogenetic analyses based on both mitochondrial and nuclear DNA revealed a main, deep dichotomy within the genus Orestias, separating the agassizii complex from a clade grouped under shallow dichotomies as (luteus, (cuvieri, gilsoni)). This 'deep and shallow' diversification pattern could fit within a scenario of ancient divergence between the agassizii complex and the rest of Orestias, followed by a recent diversification or adaptive radiation within each complex during the Pleistocene, in- and outside the Lake Titicaca. We could not recover the reciprocal monophyly of any of the 15 species or morphotypes that were considered in our analyses, possibly due to incomplete lineage sorting and/or hybridization events. As a consequence, our results starkly question the delineation of a series of diagnostic characters listed in the literature for Orestias. Although not included in our phylogenetic analysis, the syntype of O. jussiei could not be assigned to the agassizii complex as newly defined. The CR sequence of the extinct O. cuvieri was recovered within the cuvieri clade (same haplotype as one representative of O. pentlandii), so the mtDNA of the former species might still be represented in the wild.
Assuntos
DNA/genética , Peixes Listrados/classificação , Peixes Listrados/genética , Estruturas Animais/anatomia & histologia , Animais , Evolução Molecular , Feminino , Peixes Listrados/anatomia & histologia , Masculino , Museus , Filogenia , Preservação BiológicaRESUMO
The global importance of mesopelagic fish is increasingly recognised, but they remain poorly studied. This is particularly true in the Southern Ocean, where mesopelagic fishes are both key predators and prey, but where the remote environment makes sampling challenging. Despite this, multiple national Antarctic research programs have undertaken regional sampling of mesopelagic fish over several decades. However, data are dispersed, and sampling methodologies often differ precluding comparisons and limiting synthetic analyses. We identified potential data holders by compiling a metadata catalogue of existing survey data for Southern Ocean mesopelagic fishes. Data holders contributed 17,491 occurrence and 11,190 abundance records from 4780 net hauls from 72 different research cruises. Data span across 37 years from 1991 to 2019 and include trait-based information (length, weight, maturity). The final dataset underwent quality control processes and detailed metadata was provided for each sampling event. This dataset can be accessed through Zenodo. Myctobase will enhance research capacity by providing the broadscale baseline data necessary for observing and modelling mesopelagic fishes.
Assuntos
Ecossistema , Peixes , Animais , Regiões Antárticas , Bases de Dados FactuaisRESUMO
There has been a significant body of literature on species flock definition but not so much about practical means to appraise them. We here apply the five criteria of Eastman and McCune for detecting species flocks in four taxonomic components of the benthic fauna of the Antarctic shelf: teleost fishes, crinoids (feather stars), echinoids (sea urchins) and crustacean arthropods. Practical limitations led us to prioritize the three historical criteria (endemicity, monophyly, species richness) over the two ecological ones (ecological diversity and habitat dominance). We propose a new protocol which includes an iterative fine-tuning of the monophyly and endemicity criteria in order to discover unsuspected flocks. As a result nine « full ¼ species flocks (fulfilling the five criteria) are briefly described. Eight other flocks fit the three historical criteria but need to be further investigated from the ecological point of view (here called "core flocks"). The approach also shows that some candidate taxonomic components are no species flocks at all. The present study contradicts the paradigm that marine species flocks are rare. The hypothesis according to which the Antarctic shelf acts as a species flocks generator is supported, and the approach indicates paths for further ecological studies and may serve as a starting point to investigate the processes leading to flock-like patterning of biodiversity.