Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Reprod ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970902

RESUMO

STUDY QUESTION: What is the longitudinal association between gestational phthalate exposure and in vivo placental outcomes? SUMMARY ANSWER: Phthalates were adversely associated with placental microvasculature, stiffness, and presence of calcification, with different metabolites associated with different outcomes. WHAT IS KNOWN ALREADY: Phthalate exposure is ubiquitous and implicated as a contributor to adverse pregnancy outcomes, possibly through impacts on the placenta. STUDY DESIGN, SIZE, DURATION: A total of 303 women were recruited in early pregnancy and prospectively followed for up to eight visits across gestation in the Human Placenta and Phthalates study. PARTICIPANTS/MATERIALS, SETTING, METHODS: At each visit, women provided urine samples and underwent placental ultrasounds. Urine was analyzed for 18 metabolites of phthalates and replacements. We took the geometric mean of repeated measurements to reflect pregnancy-averaged phthalate or replacement exposure for each participant (n = 303). Placental microvasculature, stiffness, and microcalcification presence were quantified from ultrasounds at each visit. Higher scores reflected worse placental function for all measures. Generalized linear mixed models were created to estimate the association between pregnancy-averaged exposure biomarker concentrations and repeated outcome measurements for microvasculature and stiffness. Gestational age at the time of calcification detection was modeled using Cox proportional hazards models. MAIN RESULTS AND THE ROLE OF CHANCE: Monocarboxyisononyl phthalate and summed di(2-ethylhexyl) phthalate metabolites were associated with impaired microvasculature development, such that an interquartile range increase in concentration was associated with 0.11 standard deviation increase in the microvasculature ratio, indicating poorer vascularization (95% CI: 0.00, 0.22); 0.11 [95% CI: -0.01, 0.22], respectively. Monoethyl phthalate was associated with increased placental stiffness (0.09 [95% CI: -0.01, 0.19]) while summed di-iso-butyl phthalate metabolites and monobenzyl phthalate were associated with increased hazard of calcification detection (hazard ratios: 1.18 [95% CI: 0.98, 1.42]; 1.13 [95% CI: 0.96, 1.34]). LIMITATIONS, REASONS FOR CAUTION: Outcomes used in this study are novel and further investigation is needed to provide clinical context and relevance. WIDER IMPLICATIONS OF THE FINDINGS: We found evidence of associations between select phthalate biomarkers and various aspects of in vivo placental health, although we did not observe consistency across placental outcomes. These findings could illustrate heterogeneous effects of phthalate exposure on placental function. STUDY FUNDING/COMPETING INTEREST(S): This research was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (ZIA ES103344), and NIEHS T32ES007018. The authors declare that they have no competing interests to disclose. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention. Use of trade names is for identification only and does not imply endorsement by the CDC, the Public Health Service, or the US Department of Health and Human Services. TRIAL REGISTRATION NUMBER: N/A.

2.
Environ Sci Technol ; 57(35): 13036-13046, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37607343

RESUMO

Human exposure to phthalates is widespread, but assessment of variability across pregnancy has been hampered by short half-lives of phthalate biomarkers and a few repeated measures in prior studies. We aimed to characterize the variability and longitudinal profiles of phthalate and replacement biomarkers across pregnancy. Within the Human Placenta and Phthalates Study, 303 pregnant women provided urine samples at up to 8 visits across gestation. Concentrations of 14 metabolites of phthalates and 4 metabolites of replacements were quantified in each sample, and subject-specific averages within each trimester were calculated. We examined variability in individual biomarker concentrations across the 8 visits, within trimesters, and across trimester-specific averages using intraclass correlation coefficients (ICCs). To explore longitudinal exposure biomarker profiles, we applied group-based trajectory modeling to trimester-specific averages over pregnancy. Pooling multiple visits into trimester-specific averages improved the ICCs for all biomarkers. Most biomarkers generally showed stable concentrations across gestation, i.e., high-, medium-, and low-concentration profiles, with small proportions of participants falling into the "high"-exposure groups. Variability over pregnancy is likely attributable to random fluctuations around a baseline exposure rather than true changes in concentrations over time.


Assuntos
Ácidos Ftálicos , Gravidez , Humanos , Feminino , Biomarcadores , Placenta
3.
Environ Res ; 229: 115975, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37094650

RESUMO

BACKGROUND: Pregnant persons are exposed ubiquitously to phthalates and increasingly to chemicals introduced to replace phthalates. In early pregnancy, exposure to these chemicals may disrupt fetal formation and development, manifesting adverse fetal growth. Previous studies examining the consequences of early pregnancy exposure relied on single spot urine measures and did not investigate replacement chemicals. OBJECTIVE: Characterize associations between urinary phthalate and replacement biomarkers in early pregnancy and fetal growth outcomes. METHODS: Analyses were conducted among 254 pregnancies in the Human Placenta and Phthalates Study, a prospective cohort with recruitment 2017-2020. Exposures were geometric mean concentrations of phthalate and replacement biomarkers quantified in two spot urine samples collected around 12- and 14-weeks of gestation. Outcomes were fetal ultrasound biometry (head and abdominal circumferences, femur length, estimated fetal weight) collected in each trimester and converted to z-scores. Adjusted linear mixed effects (single-pollutant) and quantile g-computation (mixture) models with participant-specific random effects estimated the difference, on average, in longitudinal fetal growth for a one-interquartile range (IQR) increase in individual (single-pollutant) or all (mixture) early pregnancy phthalate and replacement biomarkers. RESULTS: Mono carboxyisononyl phthalate and the sums of metabolites of di-n-butyl, di-iso-butyl, and di-2-ethylhexyl phthalate were inversely associated with fetal head and abdominal circumference z-scores. A one-IQR increase in the phthalate and replacement biomarker mixture was inversely associated with fetal head circumference (ß: -0.36 [95% confidence interval: -0.56, -0.15]) and abdominal circumference (-0.31 [-0.49, -0.12]) z-scores. This association was mainly driven by phthalate biomarkers. CONCLUSIONS: Urine concentrations of phthalate biomarkers, but not replacement biomarkers, in early pregnancy were associated with reductions in fetal growth. Though the clinical implications of these differences are unclear, reduced fetal growth contributes to excess morbidity and mortality across the lifecourse. Given widespread global exposure to phthalates, findings suggest a substantial population health burden resulting from early pregnancy phthalate exposure.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Gravidez , Feminino , Humanos , Estudos Prospectivos , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , Desenvolvimento Fetal , Placenta/metabolismo , Poluentes Ambientais/toxicidade , Biomarcadores , Exposição Ambiental
4.
Artigo em Inglês | MEDLINE | ID: mdl-38177334

RESUMO

BACKGROUND: Humans are exposed to phthalates, a class of non-persistent chemicals, through multiple products, including personal care and cosmetics. Associations between specific phthalates and product use have been inconsistent. However, determining these connections could provide avenues for exposure reduction. OBJECTIVE: Examine the association between patterns of personal care product use and associations with phthalate and replacement biomarkers. METHODS: In the Human Placenta and Phthalates Study, 303 women were enrolled in early pregnancy and followed for up to 8 visits across gestation. At each visit, women completed a questionnaire about product use in the prior 24 hours and contributed urine samples, subsequently analyzed for 18 phthalate and replacement metabolites. At early, mid-, and late pregnancy, questionnaire responses were condensed and repeated metabolite concentrations were averaged. Latent class analysis (LCA) was used to determine groups of women with similar use patterns, and weighted associations between group membership and biomarker concentrations were assessed. RESULTS: LCA sorted women into groups which largely corresponded to: (1) low fragranced product use (16-23% of women); (2) fragranced product and low body wash use (22-26%); 3) fragranced product and low bar soap use (26-51%); and (4) low product use (7-34%). Monoethyl phthalate (MEP) urinary concentrations were 7-10% lower and concentrations of summed di(2-ethylhexyl) terephthalate metabolites were 15-21% lower among women in the "low fragranced product use" group compared to the population mean. Few other consistent associations between group and biomarker concentrations were noted. IMPACT STATEMENT: Personal care products and cosmetics are a known exposure source for phthalates and potentially represent one of the most accessible intervention targets for exposure reduction. However, in this analysis accounting for concurrent use and fragranced status of products, we did not find any use patterns that corresponded to universally lower levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA