Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lab Invest ; 97(5): 498-518, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28287634

RESUMO

High-grade gliomas are rapidly progressing tumors of the central nervous system (CNS) with a very poor prognosis despite extensive resection combined with radiation and/or chemotherapy. Histopathological and flow cytometry analyses of human and rodent experimental gliomas revealed heterogeneity of a tumor and its niche, composed of reactive astrocytes, endothelial cells, and numerous immune cells. Infiltrating immune cells consist of CNS resident (microglia) and peripheral macrophages, granulocytes, myeloid-derived suppressor cells (MDSCs), and T lymphocytes. Intratumoral density of glioma-associated microglia/macrophages (GAMs) and MDSCs is the highest in malignant gliomas and inversely correlates with patient survival. Although GAMs have a few innate immune functions intact, their ability to be stimulated via TLRs, secrete cytokines, and upregulate co-stimulatory molecules is not sufficient to initiate antitumor immune responses. Moreover, tumor-reprogrammed GAMs release immunosuppressive cytokines and chemokines shaping antitumor responses. Both GAMs and MDSCs have ability to attract T regulatory lymphocytes to the tumor, but MDSCs inhibit cytotoxic responses mediated by natural killer cells, and block the activation of tumor-reactive CD4+ T helper cells and cytotoxic CD8+ T cells. The presence of regulatory T cells may further contribute to the lack of effective immune activation against malignant gliomas. We review the immunological aspects of glioma microenvironment, in particular composition and various roles of the immune cells infiltrating malignant human gliomas and experimental rodent gliomas. We describe tumor-derived signals and mechanisms driving myeloid cell accumulation and reprogramming. Although, understanding the complexity of cell-cell interactions in glioma microenvironment is far from being achieved, recent studies demonstrated several glioma-derived factors that trigger migration, accumulation, and reprogramming of immune cells. Identification of these factors may facilitate development of immunotherapy for gliomas as immunomodulatory and immune evasion mechanisms employed by malignant gliomas pose an appalling challenge to brain tumor immunotherapy.


Assuntos
Neoplasias Encefálicas/imunologia , Glioma/imunologia , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Humanos , Macrófagos/imunologia , Camundongos , Microglia/imunologia
2.
PLoS One ; 19(4): e0301757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626047

RESUMO

Covid-19 has challenged health systems around the world and increased the global competition for medical professionals. This article investigates if the pandemic and its management became an important push factor influencing the migration intentions of medical students and junior doctors and how this factor compared in importance to others. A mixed methods study-a survey and in-depth interviews-was conducted with final-year students at public medical universities in Poland, a country already suffering from a significant emigration of medical staff. The research demonstrated that the difficulties of the Polish healthcare system in dealing with Covid-19 were a factor that slightly positively influenced the emigration intentions of medical students and junior doctors. Nevertheless, the pandemic's influence was not decisive. Factors such as the socio-political situation in Poland (.440**) (including hate speech directed at doctors by politicians and patients), the participants' family situation (.397**), healthcare system organization (.376**), or the opportunity of pursuing a planned career path (.368**) proved more influential. Salary is still important but did not turn out to be among the decisive factors. This allows us to conclude that migration decisions of medical students have a very well-established basis that does not fundamentally change even under the influence of such dramatic situations as the pandemic. This conclusion has important implications for healthcare management and the ongoing discussion in migration studies on the evolution of push and pull factors in place and time.


Assuntos
COVID-19 , Estudantes de Medicina , Humanos , Intenção , Polônia/epidemiologia , Pandemias , COVID-19/epidemiologia , Emigração e Imigração
3.
Sci Rep ; 7(1): 17556, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29242629

RESUMO

Glioblastoma (GBM) is the most aggressive primary brain tumor, with ineffective anti-tumor responses and a poor prognosis despite aggressive treatments. GBM immune microenvironment is heterogenous  and activation of specific immune populations in GBM is not fully characterized. Reliable animal models are critical for defining mechanisms of anti-tumor immunity. First we analyzed the immune subpopulations present in rat C6 gliomas. Using flow cytometry we determined kinetics of infiltration of myeloid cells and T lymphocytes into glioma-bearing brains. We found significant increases of the amoeboid, pro-tumorigenic microglia/macrophages, T helper (Th) and T regulatory (Treg) cells in tumor-bearing brains, and rare infiltrating T cytotoxic (Tc) cells. Transcriptomic analyses of glioma-bearing hemispheres revealed overexpression of invasion and immunosuppression-related genes, reflecting the immunosuppressive microenvironment. Microglia, sorted as CD11b+CD45low cells from gliomas, displayed the pro-invasive and immunosuppressive type of activation. Accumulation of Th and Treg cells combined with the reduced presence of Tc lymphocytes in rat gliomas may result in the lack of effective anti-tumor responses. Transcriptional profiles of CD11b+ cells and composition of immune infiltrates in C6 gliomas indicate that rat C6 gliomas employ similar immune system evasion strategies as human GBMs.


Assuntos
Glioblastoma/imunologia , Microambiente Tumoral/imunologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Evasão da Resposta Imune , Masculino , Microglia/metabolismo , Ratos , Ratos Wistar , Especificidade da Espécie , Transcrição Gênica
4.
Oncotarget ; 6(32): 33077-90, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26427514

RESUMO

Glioblastoma (GBM) is an aggressive malignancy associated with profound host immunosuppression. Microglia and macrophages infiltrating GBM acquire the pro-tumorigenic, M2 phenotype and support tumor invasion, proliferation, survival, angiogenesis and block immune responses both locally and systematically. Mechanisms responsible for immunological deficits in GBM patients are poorly understood. We analyzed immune/inflammatory gene expression in five datasets of low and high grade gliomas, and performed Gene Ontology and signaling pathway analyses to identify defective transcriptional responses. The expression of many immune/inflammatory response and TLR signaling pathway genes was reduced in high grade gliomas compared to low grade gliomas. In particular, we found the reduced expression of the IKBKB, a gene coding for IKKß, which phosphorylates IκB proteins and represents a convergence point for most signal transduction pathways leading to NFκB activation. The reduced IKBKB expression and IKKß levels in GBM tissues were demonstrated by qPCR, Western blotting and immunohistochemistry. The IKKß expression was down-regulated in microglia/macrophages infiltrating glioblastoma. NFκB activation, prominent in microglia/macrophages infiltrating low grade gliomas, was reduced in microglia/macrophages in glioblastoma tissues. Down-regulation of IKBKB expression and NFκB signaling in microglia/macrophages infiltrating glioblastoma correlates with defective expression of immune/inflammatory genes and M2 polarization that may result in the global impairment of anti-tumor immune responses in glioblastoma.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Quinase I-kappa B/metabolismo , Macrófagos/patologia , Microglia/patologia , Animais , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Regulação para Baixo , Perfilação da Expressão Gênica , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/imunologia , Humanos , Quinase I-kappa B/genética , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Microglia/enzimologia , Microglia/imunologia , Microglia/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA