Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 132(2): 335-347, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37478315

RESUMO

BACKGROUND AND AIMS: Studying trait variability and restricted gene flow between populations of species can reveal species dynamics. Peripheral populations commonly exhibit lower genetic diversity and trait variability due to isolation and ecological marginality, unlike central populations experiencing gene flow and optimal conditions. This study focused on Carex curvula, the dominant species in alpine acidic meadows of European mountain regions. The species is sparser in dry areas such as the Pyrenees and Balkans, compared to the Central-Eastern Alps and Carpathians. We hypothesized that distinct population groups could be identified based on their mean functional trait values and their correlation with the environment; we predicted that ecologically marginal populations would have stronger trait correlations, lower within-population trait variability (intraspecific trait variability, ITV) and lower genetic diversity than populations of optimal habitats. METHODS: Sampling was conducted in 34 populations that spanned the entire distribution range of C. curvula. We used hierarchical clustering to identify emergent functional groups of populations, defined by combinations of multiple traits associated with nutrient economy and drought tolerance (e.g. specific leaf area, anatomy). We contrasted the geographical distribution of these groups in relation to environment and genetic structure. We compared pairwise trait relationships, within-population trait variation (ITV) and neutral genetic diversity between groups. KEY RESULTS: Our study identified emergent functional groups of populations. Those in the southernmost ranges, specifically the Pyrenees and Balkan region, showed drought-tolerant trait syndromes and correlated with indicators of limited water availability. While we noted a decline in population genetic diversity, we did not observe any significant changes in ITV in ecologically marginal (peripheral) populations. CONCLUSIONS: Our research exemplifies the relationship between ecological marginality and geographical peripherality, which in this case study is linked to genetic depauperation but not to reduced ITV. Understanding these relationships is crucial for understanding the biogeographical factors shaping trait variation.


Assuntos
Ecossistema , Plantas , Fenótipo , Geografia
2.
Mol Biol Rep ; 50(5): 4729-4733, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905402

RESUMO

BACKGROUND: Microsatellite primers were developed and tested to genotype several populations of Carex curvula s. l. (Cyperaceae), in order to infer the phylogeographic relationships of the populations within species and the boundaries between the two described subspecies: C. curvula subsp. curvula and C. curvula subsp. rosae. METHODS AND RESULTS: Candidate microsatellite loci were isolated based on next-generation sequencing. We tested 18 markers for polymorphism and replicability in seven C. curvula s. l. populations and identified 13 polymorphic loci with dinucleotide repeats. Genotyping results showed the total number of alleles per locus varied from four to 23 (including both infrataxa), and the observed and expected heterozygosity ranged between 0.1 to 0.82 and 0.219 to 0.711, respectively. Furthermore, the NJ tree showed a clear separation between C. curvula subsp. curvula and C. curvula subsp. rosae. CONCLUSION: The development of these highly polymorphic markers proved to be very efficient not only in delineating between the two subspecies, but also in genetic discriminating at population level within each infrataxon. They are promising tools for evolutionary studies in Cariceae section, as well as in providing knowledge on patterns of the species phylogeography.


Assuntos
Carex (Planta) , Cyperaceae , Carex (Planta)/genética , Cyperaceae/genética , Polimorfismo Genético/genética , Genótipo , Repetições de Microssatélites/genética , Loci Gênicos
3.
Glob Chang Biol ; 26(11): 6616-6629, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32311220

RESUMO

Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.


Assuntos
Ecossistema , Microclima , Mudança Climática , Neve , Temperatura
4.
New Phytol ; 209(3): 1196-207, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26443332

RESUMO

The effect of plant species composition on soil microbial communities was studied at the multiregional level. We compared the soil microbial communities of alpine natural grasslands dominated by Carex curvula and anthropogenic subalpine pastures dominated by Nardus stricta. We conducted paired sampling across the Carpathians and the Alps and used Illumina sequencing to reveal the molecular diversity of soil microbes. We found that bacterial and fungal communities exhibited contrasting regional distributions and that the distribution in each grassland is well discriminated. Beta diversity of microbial communities was much higher in C. curvula grasslands due to a marked regional effect. The composition of grassland-type core microbiomes suggest that C. curvula, and N. stricta to a lesser extent, tend to select a cohort of microbes related to antibiosis/exclusion, pathogenesis and endophytism. We discuss these findings in light of the postglacial history of the studied grasslands, the habitat connectivity and the disturbance regimes. Human-induced disturbance in the subalpine belt of European mountains has led to homogeneous soil microbial communities at large biogeographical scales. Our results confirm the overarching role of the dominant grassland plant species in the distribution of microbial communities and highlight the relevance of biogeographical history.


Assuntos
Bactérias/metabolismo , Fungos/fisiologia , Pradaria , Atividades Humanas , Filogeografia , Humanos , Modelos Lineares , Análise Multivariada , Plantas/microbiologia , Solo
5.
Plants (Basel) ; 9(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244605

RESUMO

Genome skimming has the potential for generating large data sets for DNA barcoding and wider biodiversity genomic studies, particularly via the assembly and annotation of full chloroplast (cpDNA) and nuclear ribosomal DNA (nrDNA) sequences. We compare the success of genome skims of 2051 herbarium specimens from Norway/Polar regions with 4604 freshly collected, silica gel dried specimens mainly from the European Alps and the Carpathians. Overall, we were able to assemble the full chloroplast genome for 67% of the samples and the full nrDNA cluster for 86%. Average insert length, cover and full cpDNA and rDNA assembly were considerably higher for silica gel dried than herbarium-preserved material. However, complete plastid genomes were still assembled for 54% of herbarium samples compared to 70% of silica dried samples. Moreover, there was comparable recovery of coding genes from both tissue sources (121 for silica gel dried and 118 for herbarium material) and only minor differences in assembly success of standard barcodes between silica dried (89% ITS2, 96% matK and rbcL) and herbarium material (87% ITS2, 98% matK and rbcL). The success rate was > 90% for all three markers in 1034 of 1036 genera in 160 families, and only Boraginaceae worked poorly, with 7 genera failing. Our study shows that large-scale genome skims are feasible and work well across most of the land plant families and genera we tested, independently of material type. It is therefore an efficient method for increasing the availability of plant biodiversity genomic data to support a multitude of downstream applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA